The products described in this publication are products of Symbios Logic Inc.

SCRIPTS is a trademark and TolerANT is a registered trademark of Symbios Logic Inc.

It is the policy of Symbios Logic to improve products as new technology, components, software, and firmware become available. Symbios Logic, therefore, reserves the right to change specifications without notice.

The products in this manual are not intended for use in life-support appliances, devices, or systems. Use of these products in such applications without the written consent of the appropriate Symbios Logic officer is prohibited.

Copyright ©1995, 1996
By Symbios Logic Inc.
All Rights Reserved
Printed in U.S.A.

We use comments from our readers to improve Symbios product literature. Please e-mail any comments regarding technical documentation to pubs@symbios.com.
Preface

SCSI and PCI Reference Information

This manual assumes some prior knowledge of current and proposed SCSI and PCI standards. For background information, please contact:

ANSI
11 West 42nd Street
New York, NY 10036
(212) 642-4900
Ask for document number X 3.131-199X (SCSI-2)

Global Engineering Documents
15 Inverness Way East
Englewood, CO 80112
(800)-854-7179 or (303) 792-2181 (outside U.S.)
Ask for document number X 3.131-1994 (SCSI-2) or X 3.253 (SCSI-3 Parallel Interface)

ENDL Publications
14426 Black Walnut Court
Saratoga, CA 95070
(408) 867-6642
Document names: SCSI Bench Reference, SCSI Encyclopedia

Prentice Hall
Englewood Cliffs, NJ 07632
(201) 767-5937

Symbios Logic Electronic Bulletin Board
(719) 573-3562

SCSI Electronic Bulletin Board
(719) 533-7950

Symbios Logic Internet Anonymous FTP Site
ftp.symbios.com (204.131.200.1)
Server: Bastion
Directory: /pub/symchips/scsi

Symbios Logic World-Wide Web Home Page
http://www.symbios.com

PCI Special Interest Group
P.O. Box 10470
Portland, OR 97214
(800) 433-5177; (503) 797-4201 (International); FAX (503) 234-6762

Symbios Logic PCI-SCSI Programming Guide
Document History

<table>
<thead>
<tr>
<th>Page No.</th>
<th>Date</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>6/95</td>
<td>Rev 1.0</td>
</tr>
<tr>
<td>1-1, 1-3, 1-5, 2-1—2-4, 2-10, 2-11, 2-13, 3-2, 3-4, 3-6, 3-7, 3-9, 3-10, 4-1, 4-4, 4-6, 4-7, 5-1, 5-10, 5-12, 5-13—5-16, 5-21, 5-31, 5-35, 5-50, 6-23—6-25, 7-1, 7-2, 7-9, 7-13, 7-24</td>
<td>7/96</td>
<td>Version 2.0</td>
</tr>
</tbody>
</table>
Contents

Preface ... i
SCSI and PCI Reference Information i
Document History .. ii
List of Figures ... xiii
List of Tables ... xv

Chapter 1
Introduction

What is Covered in This Manual 1-1
General Description ... 1-1
TolerANT Technology .. 1-2
SYM 53C810A Benefits Summary 1-3
 SCSI Performance ... 1-3
 PCI Performance .. 1-3
 Integration ... 1-3
 Flexibility .. 1-4
 Reliability .. 1-4
 Testability ... 1-4

Chapter 2
Functional Description

SCSI Core .. 2-1
DMA Core ... 2-1
SCRIPTS Processor ... 2-1
SDMS: The Total SCSI Solution 2-2
Prefetching SCRIPTS Instructions 2-2
 Op Code Fetch Burst Capability 2-2
PCI Cache Mode .. 2-3
Load/Store Instructions 2-3
3.3 Volt/5 Volt PCI Interface 2-3
Loopback Mode .. 2-3
Parity Options .. 2-3
DMA FIFO ... 2-6
 Data Paths .. 2-7
 Asynchronous SCSI Send 2-7
 Synchronous SCSI Send 2-7
 Asynchronous SCSI Receive 2-7
 Synchronous SCSI Receive 2-7
Contents

SCSI Bus Interface ... 2-9
Terminator Networks ... 2-9
(Re)Select During (Re)Selection ... 2-9
Synchronous Operation .. 2-11
Determining the Data Transfer Rate ... 2-11
SCNTL3 Register, bits 6–4 (SCF2–0) ... 2-11
SCNTL3 Register, bits 2–0 (CCF2–0) ... 2-11
SXFER Register, bits 7–5 (TP2–0) .. 2-11
Achieving Optimal SCSI Send Rates 2-11
Interrupt Handling ... 2-13
Polling and Hardware Interrupts ... 2-13
Registers .. 2-13
ISTAT ... 2-13
SIST0 and SIST1 ... 2-13
DSTAT ... 2-13
SIEN0 and SIEN1 ... 2-14
DIEN ... 2-14
DCNTL .. 2-14
Fatal vs. Non-Fatal Interrupts .. 2-14
Masking ... 2-14
Stacked Interrupts .. 2-15
Halting in an Orderly Fashion .. 2-15
Sample Interrupt Service Routine .. 2-16

Chapter 3
PCI Functional Description

PCI Addressing ... 3-1
PCI Bus Commands and Functions Supported 3-1
PCI Cache Mode .. 3-2
Support for PCI Cache Line Size Register 3-2
Selection of Cache Line Size .. 3-2
Alignment .. 3-2
MMOV Misalignment ... 3-2
Memory Write and Invalidate Command 3-3
Multiple Cache Transfers ... 3-3
Latency ... 3-3
PCI Target Retries ... 3-3
PCI Target Disconnect ... 3-3
Memory Read Line Command .. 3-4
Memory Read Multiple Command .. 3-4
Burst Size Selection .. 3-4
Read Multiple with Read Line Enabled 3-5
Unsupported PCI Commands .. 3-5
Configuration Registers ... 3-6
 Register 00h
 Vendor ID
 Read Only ... 3-7
 Register 02h
 Device ID
 Read Only ... 3-7
 Register 04h
 Command
 Read/Write ... 3-7
 Register 06h
 Status
 Read/Write ... 3-8
 Register 08h
 Revision ID
 Read Only ... 3-10
 Register 09h
 Class Code
 Read Only ... 3-10
 Register 0Ch
 Cache Line Size
 Read/Write ... 3-10
 Register 0Dh
 Latency Timer
 Read/Write ... 3-10
 Register 0Eh
 Header Type
 Read Only ... 3-11
 Register 10h
 Base Address Zero (I/O)
 Read/Write ... 3-11
 Register 14h
 Base Address One (Memory)
 Read/Write ... 3-11
 Register 3Ch
 Interrupt Line
 Read/Write ... 3-11
 Register 3Dh
 Interrupt Pin
 Read Only ... 3-11
 Register 3Eh
 Min_Gnt
 Read Only ... 3-11
 Register 3Fh
 Max_Lat
 Read Only ... 3-11
Chapter 4
Signal Descriptions

Chapter 5
Operating Registers

Register 00 (80)
SCSI Control Zero (SCNTL0)
Read/Write ... 5-5

Register 01 (81)
SCSI Control One (SCNTL1)
Read/Write ... 5-7

Register 02 (82)
SCSI Control Two (SCNTL2)
Read/Write ... 5-9

Register 03 (83)
SCSI Control Three (SCNTL3)
Read/Write ... 5-9

Register 04 (84)
SCSI Chip ID (SCID)
Read/Write ... 5-11

Register 05 (85)
SCSI Transfer (SXFER)
Read/Write ... 5-11

Register 06 (86)
SCSI Destination ID (SDID)
Read/Write ... 5-13

Register 07 (87)
General Purpose (GPREG)
Read/Write ... 5-14

Register 08 (88)
SCSI First Byte Received (SFBR)
Read/Write ... 5-14

Register 09 (89)
SCSI Output Control Latch (SOCL)
Read/Write ... 5-15

Register 0A (8A)
SCSI Selector ID (SSID)
Read Only ... 5-15

Register 0B (8B)
SCSI Bus Control Lines (SBCL)
Read Only ... 5-16

Register 0C (8C)
DMA Status (DSTAT)
Read Only ... 5-16

Register 0D (8D)
SCSI Status Zero (SSTAT0)
Read Only ... 5-17

Register 0E (8E)
SCSI Status One (SSTAT1)
Read Only ... 5-18
Contents

Register 0F (8F)
 SCSI Status Two (SSTAT2)
 (Read Only) ... 5-19
Registers 10-13 (90-93)
 Data Structure Address (DSA)
 Read/Write .. 5-20
Register 14 (94)
 Interrupt Status (ISTAT)
 (Read/Write) .. 5-20
Register 18 (98)
 Chip Test Zero (CTEST0)
 Read/Write .. 5-22
Register 19 (99)
 Chip Test One (CTEST1)
 Read Only ... 5-23
Register 1A (9A)
 Chip Test Two (CTEST2)
 Read Only ... 5-23
Register 1B (9B)
 Chip Test Three (CTEST3)
 Read/Write .. 5-24
Registers 1C-1F (9C-9F)
 Temporary (TEMP)
 Read/Write .. 5-25
Register 20 (A0)
 DMA FIFO (DFIFO)
 Read/Write .. 5-26
Register 21 (A1)
 Chip Test Four (CTEST4)
 Read/Write .. 5-26
Register 22 (A2)
 Chip Test Five (CTEST5)
 Read/Write .. 5-27
Register 23 (A3)
 Chip Test Six (CTEST6)
 Read/Write .. 5-28
Registers 24-26 (A4-A6)
 DMA Byte Counter (DBC)
 Read/Write .. 5-28
Register 27 (A7)
 DMA Command (DCMD)
 Read/Write .. 5-29
Registers 28-2B (A8-AB)
 DMA Next Address (D NAD)
 Read/Write .. 5-29
Registers 2C-2F (AC-AF)
 DMA SCRIPTS Pointer (DSP)
 Read/Write .. 5-30
Registers 30-33 (B0-B3)
 DMA SCRIPTS Pointer Save (DSPS)
 Read/Write .. 5-30
Contents

Registers 34-37 (B4-B7)
 Scratch Register A (SCRATCH A)
 Read/Write .. 5-31
Register 38 (B8)
 DMA Mode (DMODE)
 Read/Write .. 5-31
Register 39 (B9)
 DMA Interrupt Enable (DIEN)
 Read/Write .. 5-33
Register 3A (BA)
 Scratch Byte Register (SBR)
 Read/Write .. 5-33
Register 3B (BB)
 DMA Control (DCNTL)
 Read/Write .. 5-34
Register 3C-3F (BC-BF)
 Adder Sum Output (ADDER)
 Read Only .. 5-35
Register 40 (C0)
 SCSI Interrupt Enable Zero (SIEN0)
 Read/Write .. 5-36
Register 41 (C1)
 SCSI Interrupt Enable One (SIEN1)
 Read/Write .. 5-37
Register 42 (C2)
 SCSI Interrupt Status Zero (SIST0)
 Read Only .. 5-38
Register 43 (C3)
 SCSI Interrupt Status One (SIST1)
 Read Only .. 5-40
Register 44 (C4)
 SCSI Longitudinal Parity (SLPAR)
 Read/Write .. 5-40
Register 46 (C6)
 Memory Access Control (MACNTL)
 Read/Write .. 5-41
Register 47 (C7)
 General Purpose Pin Control (GPCNTL)
 Read/Write .. 5-41
Register 48 (C8)
 SCSI Timer Zero (STIME0)
 Read/Write .. 5-42
Register 49 (C9)
 SCSI Timer One (STIME1)
 Read/Write .. 5-43
Register 4A (CA)
 Response ID (RESPID)
 Read/Write .. 5-43
Register 4C (CC)
 SCSI Test Zero (STEST0)
 Read Only .. 5-44
Register 4D (CD)
 SCSI Test One (STEST1)
 Read/Write ... 5-45

Register 4E (CE)
 SCSI Test Two (STEST2)
 Read/Write ... 5-45

Register 4F (CF)
 SCSI Test Three (STEST3)
 Read/Write ... 5-46

Register 50 (D0)
 SCSI Input Data Latch (SIDL)
 Read Only ... 5-47

Registers 54 (D4)
 SCSI Output Data Latch (SODL)
 Read/Write ... 5-48

Registers 58 (D8)
 SCSI Bus Data Lines (SBDL)
 Read Only ... 5-48

Registers 5C-5F (DC-DF)
 Scratch Register B (SCRATCHB)
 (Read/Write) ... 5-49

Chapter 6
Instruction Set of the I/O Processor

SCSI SCRIPTS ... 6-1
 Sample Operation 6-2

Block Move Instructions 6-4
 First Dword ... 6-4
 Second Dword 6-8

I/O Instructions .. 6-8
 First Dword ... 6-8
 Second Dword 6-13

Read/Write Instructions 6-14
 First Dword ... 6-14
 Second Dword 6-14
 Read-Modify-Write Cycles 6-14
 Move to/from SFBR Cycles 6-14

Transfer Control Instructions 6-17
 First Dword ... 6-17
 Second Dword 6-21

Memory Move Instructions 6-21
 First Dword ... 6-23
 Second Dword 6-23
 Third Dword ... 6-23
 Read/Write System Memory from a SCRIPTS Instruction 6-23

Load and Store Instructions 6-24
 First Dword ... 6-24
 Second Dword 6-24
Chapter 7
Electrical Characteristics

DC Characteristics ... 7-1
TolerANT Technology ... 7-6
AC Characteristics ... 7-9
PCI Interface Timing Diagrams ... 7-11
 Target Cycles ... 7-11
 Initiator Cycles .. 7-11
PCI Interface Timings ... 7-22
SCSI Timings .. 7-23
 Initiator Asynchronous Send ... 7-23
 Initiator Asynchronous Receive ... 7-24
 Target Asynchronous Send ... 7-25
 Target Asynchronous Receive ... 7-26
 Initiator and Target Synchronous Transfers 7-27

Appendix A
Register Summary

Appendix B
Mechanical Drawing

Index ... I-1
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>SYM53C810A System Diagram</td>
<td>1-5</td>
</tr>
<tr>
<td>1-2</td>
<td>SYM53C810A Chip Block Diagram</td>
<td>1-5</td>
</tr>
<tr>
<td>2-1</td>
<td>DMA FIFO Sections</td>
<td>2-6</td>
</tr>
<tr>
<td>2-2</td>
<td>SYM Host Interface Data Paths</td>
<td>2-8</td>
</tr>
<tr>
<td>2-3</td>
<td>Active or Regulated Termination</td>
<td>2-10</td>
</tr>
<tr>
<td>2-4</td>
<td>Determining the Synchronous Transfer Rate</td>
<td>2-12</td>
</tr>
<tr>
<td>3-1</td>
<td>PCI Configuration Register Map</td>
<td>3-6</td>
</tr>
<tr>
<td>3-2</td>
<td>Command Register Layout</td>
<td>3-8</td>
</tr>
<tr>
<td>3-3</td>
<td>Status Register Layout</td>
<td>3-9</td>
</tr>
<tr>
<td>4-1</td>
<td>SYM53C810A Pin Diagram</td>
<td>4-1</td>
</tr>
<tr>
<td>4-2</td>
<td>Functional Signal Grouping</td>
<td>4-3</td>
</tr>
<tr>
<td>4-1</td>
<td>SYM53C810A Register Address Map</td>
<td>5-4</td>
</tr>
<tr>
<td>6-1</td>
<td>SCRIPTS Overview</td>
<td>6-3</td>
</tr>
<tr>
<td>6-2</td>
<td>Block Move Instruction Register</td>
<td>6-5</td>
</tr>
<tr>
<td>6-3</td>
<td>I/O Instruction Register</td>
<td>6-10</td>
</tr>
<tr>
<td>6-4</td>
<td>Read/Write Register Instruction</td>
<td>6-15</td>
</tr>
<tr>
<td>6-5</td>
<td>Transfer Control Instruction</td>
<td>6-18</td>
</tr>
<tr>
<td>6-6</td>
<td>Memory to Memory Move Instruction</td>
<td>6-22</td>
</tr>
<tr>
<td>6-7</td>
<td>Load and Store Instruction Format</td>
<td>6-25</td>
</tr>
<tr>
<td>7-1</td>
<td>Rise and Fall Time Test Conditions</td>
<td>7-7</td>
</tr>
<tr>
<td>7-2</td>
<td>SCSI Input Filtering</td>
<td>7-7</td>
</tr>
<tr>
<td>7-3</td>
<td>Hysteresis of SCSI Receiver</td>
<td>7-8</td>
</tr>
<tr>
<td>7-4</td>
<td>Input Current as a Function of Input Voltage</td>
<td>7-8</td>
</tr>
<tr>
<td>7-5</td>
<td>Output Current as a Function of Output Voltage</td>
<td>7-8</td>
</tr>
<tr>
<td>7-6</td>
<td>Clock Timing Waveform</td>
<td>7-9</td>
</tr>
<tr>
<td>7-7</td>
<td>Reset Input Waveforms</td>
<td>7-10</td>
</tr>
<tr>
<td>7-8</td>
<td>Interrupt Output Waveforms</td>
<td>7-10</td>
</tr>
<tr>
<td>7-9</td>
<td>PCI Configuration Register Read</td>
<td>7-12</td>
</tr>
<tr>
<td>7-10</td>
<td>PCI Configuration Register Write</td>
<td>7-13</td>
</tr>
<tr>
<td>7-11</td>
<td>Target Read</td>
<td>7-14</td>
</tr>
<tr>
<td>7-12</td>
<td>Target Write</td>
<td>7-15</td>
</tr>
</tbody>
</table>
List of Figures

Figure 7-13: Op Code Fetch, non-burst ... 7-16
Figure 7-14: Burst Op Code Fetch .. 7-17
Figure 7-15: Back to Back Read .. 7-18
Figure 7-16: Back to Back Write ... 7-19
Figure 7-17: Burst Read ... 7-20
Figure 7-18: Burst Write ... 7-21
Figure 7-19: Initiator Asynchronous Send Waveforms 7-23
Figure 7-20: Initiator Asynchronous Receive Waveforms 7-24
Figure 7-21: Target Asynchronous Send Waveforms 7-25
Figure 7-22: Target Asynchronous Receive Waveforms 7-26
Figure 7-23: Initiator and Target Synchronous Transfers 7-27
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Bits Used for Parity Control and Observation</td>
<td>2-4</td>
</tr>
<tr>
<td>2-2</td>
<td>SCSI Parity Control</td>
<td>2-5</td>
</tr>
<tr>
<td>2-3</td>
<td>SCSI Parity Errors and Interrupts</td>
<td>2-5</td>
</tr>
<tr>
<td>3-1</td>
<td>PCI Bus Commands and Encoding Types</td>
<td>3-5</td>
</tr>
<tr>
<td>4-1</td>
<td>Power and Ground Pins</td>
<td>4-2</td>
</tr>
<tr>
<td>4-2</td>
<td>System Pins</td>
<td>4-4</td>
</tr>
<tr>
<td>4-3</td>
<td>Address and Data Pins</td>
<td>4-4</td>
</tr>
<tr>
<td>4-4</td>
<td>Interface Control Pins</td>
<td>4-5</td>
</tr>
<tr>
<td>4-5</td>
<td>Arbitration Pins</td>
<td>4-5</td>
</tr>
<tr>
<td>4-6</td>
<td>Error Reporting Pins</td>
<td>4-6</td>
</tr>
<tr>
<td>4-7</td>
<td>SCSI Pins</td>
<td>4-6</td>
</tr>
<tr>
<td>4-8</td>
<td>Additional Interface Pins</td>
<td>4-7</td>
</tr>
<tr>
<td>5-1</td>
<td>Operating Register Addresses and Descriptions</td>
<td>5-1</td>
</tr>
<tr>
<td>5-2</td>
<td>Synchronous Clock Conversion Factor</td>
<td>5-10</td>
</tr>
<tr>
<td>5-3</td>
<td>Asynchronous Clock Conversion Factor</td>
<td>5-10</td>
</tr>
<tr>
<td>5-4</td>
<td>Examples of Synchronous Transfer Periods and Rates for SCSI-1</td>
<td>5-12</td>
</tr>
<tr>
<td>5-5</td>
<td>Examples of Synchronous Transfer Periods and Rates for Fast SCSI</td>
<td>5-12</td>
</tr>
<tr>
<td>5-6</td>
<td>SCSI Synchronous Offset Values</td>
<td>5-13</td>
</tr>
<tr>
<td>6-1</td>
<td>Read/Write Instructions</td>
<td>6-16</td>
</tr>
<tr>
<td>7-1</td>
<td>Absolute Maximum Stress Ratings</td>
<td>7-1</td>
</tr>
<tr>
<td>7-2</td>
<td>Operating Conditions</td>
<td>7-2</td>
</tr>
<tr>
<td>7-3</td>
<td>SCSI Signals - SD (7-0)/, SDP/, SREQ/ SACK/</td>
<td>7-2</td>
</tr>
<tr>
<td>7-4</td>
<td>SCSI Signals - SM SG, SI_O/, SC_D/, SAT N/, SBSY/, SSEL/, SRST/</td>
<td>7-3</td>
</tr>
<tr>
<td>7-5</td>
<td>Input Signals - CL K, SCLK, GNT/, IDSEL, RST/, TESTIN</td>
<td>7-3</td>
</tr>
<tr>
<td>7-6</td>
<td>Capacitance</td>
<td>7-3</td>
</tr>
<tr>
<td>7-7</td>
<td>Output Signal - MAC/_TEST OUT, REQ/</td>
<td>7-4</td>
</tr>
<tr>
<td>7-8</td>
<td>Output Signal - IRQ/</td>
<td>7-4</td>
</tr>
<tr>
<td>7-9</td>
<td>Output Signal - SERR/</td>
<td>7-4</td>
</tr>
<tr>
<td>7-10</td>
<td>Bidirectional Signals - AD (31-0), C_BE/(3-0), FRAM E, IRDY/, TRDY/, DEVSEL/, STOP/, PERR/, PAR</td>
<td>7-5</td>
</tr>
</tbody>
</table>
List of Tables

Table 7-11: Bidirectional Signals - GPIO0_FETCH/, GPIO1_MASTER/ 7-5
Table 7-12: TolerANT Active Negation Technology Electrical Characteristics 7-6
Table 7-13: Clock Timing ... 7-9
Table 7-14: Reset Input Timings ... 7-10
Table 7-15: Interrupt Output Timings ... 7-10
Table 7-16: SYM53C810A PCI Timings .. 7-22
Table 7-17: Initiator Asynchronous Send Timings (5 M B/s) ... 7-23
Table 7-18: Initiator Asynchronous Receive Timings (5 M B/s) 7-24
Table 7-19: Target Asynchronous Send Timings (5 M B/s) ... 7-25
Table 7-20: Target Asynchronous Receive Timings (5 M B/s) .. 7-26
Table 7-21: SCSI-1 Transfers (Single-Ended, 5.0 M B/s) .. 7-27
Table 7-22: SCSI-2 Fast Transfers (10.0 M B/s (8-bit transfers), 40 M Hz clock) 7-28
Table 7-23: SCSI-2 Fast Transfers (10.0 M B/s (8-bit transfers), 50 M Hz clock) 7-28
Chapter 1
Introduction

What is Covered in This Manual

This manual provides reference information on the SYM53C810A PCI-SCSI I/O Processor. It is intended for system designers and programmers who are using this device to design a SCSI port for PCI-based personal computers, workstations, or embedded applications.

This chapter includes general information about the SYM53C810A and other members of the SYM53C8XX family of PCI-SCSI I/O Processors. Chapter 2 describes the main functional areas of the chip in more detail, including the interfaces to the SCSI bus. Chapter 3 describes the chip's connection to the PCI bus, including the PCI commands and configuration registers supported. Chapter 4 contains the pin diagrams and definitions of each signal. Chapter 5 describes each bit in the operating registers, organized by address. Chapter 6 defines all of the SCSI SCRIPTS™ instructions that are supported by the SYM53C810A. Chapter 7 contains the electrical characteristics and AC timings for the chip. The appendixes contain a register summary and a mechanical drawing of the SYM53C810A.

This data manual assumes the user is familiar with the current and proposed standards for SCSI and PCI. For additional background information on these topics, please refer to the list of reference materials provided in the Preface of this document.

General Description

The SYM53C810A PCI-SCSI I/O Processor brings high-performance I/O solutions to host adapter, workstation, and general computer designs, making it easy to add SCSI to any PCI system.

The SYM53C810A is a pin-for-pin replacement for the SYM53C810 PCI-SCSI I/O processor. It performs Fast SCSI transfers in single-ended mode, and improves performance by optimizing PCI bus utilization. A system diagram showing the connections of the SYM53C810A in a PCI system is pictured in Figure 1-1. A block diagram of the SYM53C810A is pictured in Figure 1-2.

The SYM53C810A integrates a high-performance SCSI core, a PCI bus master DMA core, and the Symbios Logic SCSI SCRIPTS™ processor to meet the flexibility requirements of SCSI-1, SCSI-2, and future SCSI standards. It is designed to implement multi-threaded I/O algorithms with a minimum of processor intervention, solving the protocol overhead problems of previous intelligent and non-intelligent adapter designs.

The SYM53C810A is fully supported by the Symbios Logic SCSI Device Management System (SDMS™), a software package that supports the Advanced SCSI Protocol Interface (ASPI). SDMS provides BIOS and driver support for hard disk, tape, removable media products, and CD-ROM under the major PC operating systems.

The SYM53C810A is packaged in a compact rectangular 100-pin PQFP package to minimize board space requirements. It operates the SCSI bus at 5 M B/s asynchronously or 10 M B/s synchronously, and bursts data to the host at full PCI speeds. The
SYM 53C810A increases SCRIPTS performance and reduces PCI bus overhead by allowing instruction prefetches of four or eight dwords.

Software development tools are available to developers who use the SCSI SCRIPTS language to create customized SCSI software applications. The SYM 53C810A allows easy firmware upgrades and is supported by advanced SCRIPTS commands.

TolerANT Technology

All Symbios Logic Fast-SCSI devices feature TolerANT® technology, which includes active negation on the SCSI drivers and input signal filtering on the SCSI receivers. Active negation causes the SCSI Request, Acknowledge, Data, and Parity signals to be actively driven high rather than passively pulled up by terminators. Active negation is enabled by setting bit 7 in the STEST3 register in the SYM 53C8XX family products.

TolerANT receiver technology improves data integrity in unreliable cabling environments, where other devices would be subject to data corruption. TolerANT receivers filter the SCSI bus signals to eliminate unwanted transitions, without the long signal delay associated with RC-type input filters. This improved driver and receiver technology helps eliminate double clocking of data, the single biggest reliability issue with SCSI operations.

TolerANT input signal filtering is a built in feature of all Symbios Logic fast SCSI devices. On the SYM 53C8XX family products, the user may select a filtering period of 30 or 60 ns, with bit 1 in the STEST2 register.

The benefits of TolerANT include increased immunity to noise when the signal is going high, better performance due to balanced duty cycles, and improved fast SCSI transfer rates. In addition, TolerANT SCSI devices do not cause glitches on the SCSI bus at power up or power down, so other devices on the bus are also protected from data corruption. TolerANT is compatible with both the Alternative One and Alternative Two termination schemes proposed by the American National Standards Institute.
SYM 53C 810A Benefits Summary

SCSI Performance
- Complies with PCI 2.1 specification
- Supports variable block size and scatter/gather data transfers
- Minimizes SCSI I/O start latency
- Performs complex bus sequences without interrupts, including restore data pointers
- Reduces ISR overhead through a unique interrupt status reporting method
- Performs Fast SCSI bus transfers in single-ended mode
 - up to 7 M B/s asynchronous
 - 10 M B/s synchronous
- New Load and Store SCRIPTS instruction increases performance of data transfers to and from the chip registers
- Support for target to disconnect and later reselect with no interrupt to the system processor
- Supports execution of multi-threaded I/O algorithms in SCSI SCRIPTS with fast I/O context switching

PCI Performance
- Bursts 2, 4, 8, or 16 dwords across PCI bus with 80-byte DMA FIFO
- Pre-fetches up to 8 dwords of SCRIPTS instructions
- Supports 32-bit word data bursts with variable burst lengths.
- Bursts SCRIPTS op code fetches across the PCI bus
- Performs zero wait-state bus master data bursts faster than 110 M B/s (@ 33 M H z)
- Supports PCI Cache Line Size Register

Integration
- 3.3V/5V PCI Interface
- Full 32-bit PCI DMA bus master
- DMA controller using Memory to Memory instructions
- High performance SCSI core
- Integrated SCRIPTS processor
- Compact 100-pin PQFP packaging
- Ease of Use Direct PCI-to-SCSI connection
- Reduced SCSI development effort
- Support for the Advanced SCSI Protocol Interface (ASPI) software standard via SDMS software
- Compatibility with existing SYM 53C 7XX and 53C 8XX family SCRIPTS
- Direct connection to PCI, and SCSI single-ended bus
- Development tools and sample SCSI SCRIPTS
- Maskable and pollable interrupts
Introduction
SYM53C810A Benefits Summary

- Three programmable SCSI timers: Select/Reselect, Handshake-to-Handshake, and General Purpose. The time-out period is programmable from 100 µs to greater than 1.6 seconds
- SDMS software for complete PC-based operating system support
- Support for relative jump
- New SCSI Selected As ID bits for use when responding with multiple IDs

Flexibility
- High level programming interface (SCSI SCRIPTS)
- Support for execution of tailored SCSI sequences from main system RAM
- Flexible programming interface to tune I/O performance or to adapt to unique SCSI devices
- Flexibility to accommodate changes in the logical I/O interface definition
- Low level access to all registers and all SCSI bus signals
- Fetch, Master, and Memory Access control pins
- Support for indirect fetching of DMA address and byte counts so that SCRIPTS can be placed in a PROM
- Separate SCSI and system clocks
- Selectable IRQ pin disable bit
- Ability to route system clock to SCSI clock

Reliability
- 2 KV ESD protection on SCSI signals
- Typical 300 mV SCSI bus hysteresis
- Average operating supply current of 50 mA
- Protection against bus reflections due to impedance mismatches
- Controlled bus assertion times (reduces RFI, improves reliability, and eases FCC certification)
- Latch-up protection greater than 150 mA
- Voltage feed through protection (minimum leakage current through SCSI pads)
- 25% of pins power and ground
- Power and ground isolation of I/O pads and internal chip logic
- Symbios Logic TolerANT technology with:
 - Active negation of SCSI Data, Parity, Request, and Acknowledge signals for improved fast SCSI transfer rates.
 - Input signal filtering on SCSI receivers improves data integrity, even in noisy cabling environments.

Testability
- Access to all SCSI signals through programmed I/O
- SCSI loopback diagnostics
- SCSI bus signal continuity checking
- Single-step mode operation
- Test mode (AND tree) to check pin continuity to the board
Figure 1-1: SYM53C810A System Diagram

Figure 1-2: SYM53C810A Chip Block Diagram
Introduction
SYM53C810A Benefits Summary
Chapter 2
Functional Description

The SYM53C810A contains three functional blocks: the SCSI Core, the DMA Core, and the SCRIPTS Processor. The SYM53C810A is fully supported by the SCSI Device Management System (SDMS), a complete software package that supports the Symbios Logic product line of SCSI processors and controllers.

SCSI Core

The SCSI core supports synchronous transfer rates up to 10 M B/s, and asynchronous transfer rates up to 7 M B/s on an 8-bit SCSI bus. The SCSI core can be programmed with SCSI SCRIPTS, making it easy to fine tune the system for specific mass storage devices or advanced SCSI requirements.

The SCSI core offers low-level register access or a high-level control interface. Like first generation SCSI devices, the SYM53C810A SCSI core can be accessed as a register-oriented device. The ability to sample and/or assert any signal on the SCSI bus can be used in error recovery and diagnostic procedures. In support of loopback diagnostics, the SCSI core can perform a self-selection and operate as both an initiator and a target.

The SCSI core is controlled by the integrated SCRIPTS processor through a high-level logical interface. Commands controlling the SCSI core are fetched out of the main host memory or local memory. These commands instruct the SCSI core to Select, Reselect, Disconnect, Wait for a Disconnect, Transfer Information, Change Bus Phases and, in general, implement all aspects of the SCSI protocol. The SCRIPTS processor is a special high-speed processor optimized for SCSI protocol.

DMA Core

The DMA core is a bus master DMA device that attaches directly to the industry standard PCI Bus. The DMA core is tightly coupled to the SCSI core through the SCRIPTS processor, which supports uninterrupted scatter/gather memory operations.

The SYM53C810A supports 32-bit memory and automatically supports misaligned DMA transfers. An 80-byte FIFO allows two, four, eight, or sixteen dword bursts across the PCI bus interface to run efficiently without throttling the bus during PCI bus latency.

SCRIPTS Processor

The SCSI SCRIPTS processor allows both DMA and SCSI commands to be fetched from host memory. Algorithms written in SCSI SCRIPTS control the actions of the SCSI and DMA cores and are executed from 32-bit system RAM. The SCRIPTS processor executes complex SCSI bus sequences independently of the host CPU.

The SCRIPTS processor can begin a SCSI I/O operation in approximately 500 ns. This compares with 2-8 ms required for traditional intelligent host adapters. Algorithms may be designed to tune SCSI bus performance, to adjust to new bus device types (such as scanners, communication gateways, etc.), or to incorporate changes in the SCSI-2 or SCSI-3 logical bus definitions without sacrificing I/O performance. SCSI SCRIPTS are hardware independent, so they can be used interchangeably on any host or CPU system bus.

A complete set of development tools is available for writing custom drivers with SCSI SCRIPTS. For more information on SCSI SCRIPTS instructions supported by the SYM53C810A, see Chapter 6.
SDMS: The Total SCSI Solution

For users who do not need to develop custom drivers, Symbios Logic provides a total SCSI solution in PC environments with the SCSI Device Management System (SDMS). SDMS provides BIOS and driver support for hard disk, tape, and removable media peripherals for the major PC-based operating systems.

SDMS includes a SCSI BIOS to manage all SCSI functions related to the device. It also provides a series of SCSI device drivers that support most major operating systems. SDMS supports a multi-threaded I/O application programming interface (API) for user-developed SCSI applications. SDMS supports both the ASPI and CAM SCSI software specifications.

Prefetching SCRIPTS Instructions

When enabled (by setting the Prefetch Enable bit in the DCNTL register), the prefetch logic in the SYM53C810A fetches 4 or 8 dwords of instructions. The prefetch logic automatically determines the maximum burst size that it can perform, based on the burst length as determined by the values in the DMODE register and the PCI Cache Line Size register (if cache mode is enabled). If the unit cannot perform bursts of at least four dwords, it will disable itself.

The SYM53C810A may flush the contents of the prefetch unit under certain conditions, listed below, to ensure that the chip always operates from the most current version of the software. When one of these conditions apply, the contents of the prefetch unit are flushed automatically.

1. On every Memory Move instruction. The Memory Move (MMOV) instruction is often used to place modified code directly into memory. To make sure that the chip executes all recent modifications, the prefetch unit flushes its contents and loads the modified code every time a MMOV instruction is issued.

2. On every Store instruction. The Store instruction may also be used to place modified code directly into memory. To avoid inadvertently flushing the prefetch unit contents, use the No Flush Memory to Memory Move (NFMMOV) instruction for all MMOV operations that do not modify code within the next 4 to 8 dwords. For more information on this instruction, refer to Chapter 6.

3. On every write to the DSP register.

4. On all Transfer Control instructions when the transfer conditions are met. This is necessary because the next instruction to be executed is not the sequential next instruction in the prefetch unit.

5. When the Pre-Fetch Flush bit (DCNTL bit 5) is set. The unit flushes whenever this bit is set. The bit is self-clearing.

Op Code Fetch Burst Capability

Setting the Burst Op Code Fetch Enable bit in the DMODE register (38h) causes the SYM53C810A to burst in the first two dwords of all instruction fetches. If the instruction is a memory-to-memory move, the third dword will be accessed in a separate ownership. If the instruction is an indirect type, the additional dword will be accessed in a subsequent bus ownership. If the instruction is a table indirect Block Move, the SYM53C810A will use two accesses to obtain the four dwords required, in two bursts of two dwords each.

Note: this feature can only be used if SCRIPTS pre-fetching is disabled.
PCI Cache Mode

The SYM53C810A supports the PCI specification for an 8-bit Cache Line Size register located in PCI configuration space. The Cache Line Size register provides the ability to sense and react to non-aligned addresses corresponding to cache line boundaries. In conjunction with the Cache Line Size register, the PCI commands Read Line, Read Multiple, and Write and Invalidate are each software enabled or disabled to allow the user full flexibility in using these commands. For more information on PCI cache mode operations, refer to Chapter 3.

Load/Store Instructions

The SYM53C810A supports the Load/Store instruction type, which simplifies the movement of data between memory and the internal chip registers. It also enables the SYM53C810A to transfer bytes to addresses relative to the DSA register. For more information on the Load and Store instructions, refer to Chapter 6.

3.3 Volt/5 Volt PCI Interface

The SYM53C810A can attach directly to a 3.3 Volt or a 5 Volt PCI interface, due to separate V_{DD} pins for the PCI bus drivers. This allows the devices to be used on the universal board recommended by the PCI Special Interest Group.

Loopback Mode

The SYM53C810A loopback mode allows testing of both initiator and target functions and, in effect, lets the chip communicate with itself. When the Loopback Enable bit is set in the ST EST 1 register, the SYM53C810A allows control of all SCSI signals, whether it is operating in initiator or target mode. For more information on this mode of operation, refer to the SYM53C8XX Family Programming Guide.

Parity Options

The SYM53C810A implements a flexible parity scheme that allows control of the parity sense, allows parity checking to be turned on or off, and has the ability to deliberately send a byte with bad parity over the SCSI bus to test parity error recovery procedures. Table 2-1 defines the bits that are involved in parity control and observation. Table 2-2 describes the parity control function of the Enable Parity Checking and Assert SCSI Even Parity bits in the SCNTL0 register. Table 2-3 describes the options available when a parity error occurs.
Table 2-1: Bits Used for Parity Control and Observation

<table>
<thead>
<tr>
<th>Bit Name</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assert SAT N / on Parity Errors</td>
<td>SCNTL0, Bit 1</td>
<td>Causes the SYM 53C810A to automatically assert SAT N / when it detects a parity error while operating on the SCSI bus as an initiator.</td>
</tr>
<tr>
<td>Enable Parity Checking</td>
<td>SCNTL0, Bit 3</td>
<td>Enables the SYM 53C810A to check for parity errors on the SCSI bus. The SYM 53C810A checks for odd parity.</td>
</tr>
<tr>
<td>Assert Even SCSI Parity</td>
<td>SCNTL1, Bit 2</td>
<td>Determines the SCSI parity sense generated by the SYM 53C810A to the SCSI bus.</td>
</tr>
<tr>
<td>Disable Halt on SAT N / or a Parity Error (Target Mode Only)</td>
<td>SCNTL1, Bit 5</td>
<td>Causes the SYM 53C810A not to halt operations when a SCSI parity error is detected in target mode.</td>
</tr>
<tr>
<td>Enable Parity Error Interrupt</td>
<td>SIEN0, Bit 0</td>
<td>Determines whether the SYM 53C810A will generate an interrupt when it detects a SCSI parity error.</td>
</tr>
<tr>
<td>Parity Error</td>
<td>SIST0, Bit 0</td>
<td>This status bit is set whenever the SYM 53C810A has detected a parity error on the SCSI bus.</td>
</tr>
<tr>
<td>Status of SCSI Parity Signal</td>
<td>SSTAT0, Bit 0</td>
<td>This status bit represents the live SCSI Parity Signal (SDP).</td>
</tr>
<tr>
<td>Latched SCSI Parity</td>
<td>SSTAT1, Bit 3</td>
<td>This bit reflects the SCSI odd parity signal corresponding to the data latched into the SIDL register.</td>
</tr>
<tr>
<td>Master Parity Error Enable</td>
<td>CTEST4, Bit 3</td>
<td>Enables PCI parity checking during master data phases.</td>
</tr>
<tr>
<td>Master Data Parity Error</td>
<td>DSTAT, Bit 6</td>
<td>Set when the SYM 53C810A as a PCI master detects that a target device has signalled a parity error during a data phase.</td>
</tr>
<tr>
<td>Master Data Parity Error Interrupt Enable</td>
<td>DIEN, Bit 6</td>
<td>By clearing this bit, a Master Data Parity Error will not cause IRQ/ to be asserted, but the status bit will be set in the DSTAT register.</td>
</tr>
</tbody>
</table>
Table 2-2: SCSI Parity Control

<table>
<thead>
<tr>
<th>EPC</th>
<th>AESP</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Will not check for parity errors. Parity is generated when sending SCSI data. Asserts odd parity when sending SCSI data.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Will not check for parity errors. Parity is generated when sending SCSI data. Asserts even parity when sending SCSI data.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Checks for odd parity on SCSI data received. Parity is generated when sending SCSI data. Asserts odd parity when sending SCSI data.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Checks for odd parity on SCSI data received. Parity is generated when sending SCSI data. Asserts even parity when sending SCSI data.</td>
</tr>
</tbody>
</table>

Key:
- EPC = Enable Parity Checking (bit 3 SCNTL0)
- AESP = Assert SCSI Even Parity (bit 2 SCNTL1)

Table 2-3: SCSI Parity Errors and Interrupts

<table>
<thead>
<tr>
<th>DHP</th>
<th>PAR</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Will halt when a parity error occurs in target or initiator mode and will NOT generate an interrupt.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Will halt when a parity error occurs in target mode and will generate an interrupt in target or initiator mode.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Will not halt in target mode when a parity error occurs until the end of the transfer. An interrupt will not be generated.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Will not halt in target mode when a parity error occurs until the end of the transfer. An interrupt will be generated.</td>
</tr>
</tbody>
</table>

Key:
- DHP = Disable Halt on SATN/ or Parity Error (bit 5 SCNTL1)
- PAR = Parity Error (bit 0 SIEN0)

This table only applies when the Enable Parity Checking bit is set.
DMA FIFO

The DMA FIFO is divided into four sections, each one byte wide and 20 transfers deep. The DMA FIFO is illustrated in Figure 2-1.
Data Paths

The data path through the SYM 53C810A is dependent on whether data is being moved into or out of the chip, and whether SCSI data is being transferred asynchronously or synchronously.

Figure 2-2 shows how data is moved to/from the SCSI bus in each of the different modes.

The following steps determine if any bytes remain in the data path when the chip halts an operation:

Asynchronous SCSI Send

1. Look at the DFIFO and DBC registers and calculate if there are bytes left in the DMA FIFO. To make this calculation, subtract the seven least significant bits of the DBC register from the 7-bit value of the DFIFO register. AND the result with 7Fh for a byte count between 0 and 80.

2. Read bit 5 in the SSTAT0 register to determine if any bytes are left in the SODL register. If bit 5 is set in SSTAT0, then the SODL register is full.

Synchronous SCSI Send

1. Subtract the seven least significant bits of the DBC register from the 7-bit value of the DFIFO register. AND the result with 7Fh for a byte count between 0 and 80.

2. Read the SSTAT1 register and examine bits 7-4, the binary representation of the number of valid bytes in the SCSI FIFO, to determine if any bytes are left in the SCSI FIFO.

Asynchronous SCSI Receive

1. Look at the DFIFO and DBC registers and calculate if there are bytes left in the DMA FIFO. To make this calculation, subtract the seven least significant bits of the DBC register from the 7-bit value of the DFIFO register. AND the result with 7Fh for a byte count between 0 and 80.

2. Read bit 7 in the SSTAT0 register to determine if any bytes are left in the SIDL register. If bit 7 is set in SSTAT0, then the SIDL register is full.

3. Read bit 6 in the SSTAT0 register to determine if any bytes are left in the SODR register. If bit 6 is set in SSTAT0, then the SODR register is full.

Synchronous SCSI Receive

1. Subtract the seven least significant bits of the DBC register from the 7-bit value of the DFIFO register. AND the result with 7Fh for a byte count between 0 and 80.

2. Read bit 7 in the SSTAT0 register to determine if any bytes are left in the SIDL register. If bit 7 is set in SSTAT0, then the SIDL register is full.

3. Read bit 6 in the SSTAT0 register to determine if any bytes are left in the SODR register. If bit 6 is set in SSTAT0, then the SODR register is full.
Functional Description

DMA FIFO

Figure 2-2: SYM53C810A Host Interface Data Paths
SCSI Bus Interface

The SYM53C810A supports single-ended operation only. All SCSI signals are active low. The SYM53C810A contains the single-ended output drivers and can be connected directly to the SCSI bus. Each output is isolated from the power supply to ensure that a powered-down SYM53C810A has no effect on an active SCSI bus (CMOS “voltage feed-through” phenomena). TolerANT technology provides signal filtering at the inputs of SREQ/ and SACK/ to increase immunity to signal reflections.

Terminator Networks

The terminator networks provide the biasing needed to pull signals to an inactive voltage level, and to match the impedance seen at the end of the cable with the characteristic impedance of the cable. Terminators must be installed at the extreme ends of the SCSI chain, and only at the ends; no system should ever have more or less than two terminators installed and active. SCSI host adapters should provide a means of accommodating terminators. The terminators should be socketed, so that if not needed they may be removed, or there should be a means of disabling them with software.

Single-ended cables can use a 220 Ω pull-up to the terminator power supply (Term-Power) line and a 330 Ω pull-down to Ground. Symbios recommends active or regulated termination (also known as Alt-2 or Alternative Two termination) to maximize the high performance of the SYM53C810A. Figure 2-3 shows a Unitrode active terminator for regulated termination. For additional information, refer to the SCSI-2 Specification. TolerANT active negation can be used with any ANSI-approved termination network.

(Re)Select During (Re)Selection

In multi-threaded SCSI I/O environments, it is not uncommon to be selected or reselected while trying to perform selection/reselection. This situation may occur when a SCSI controller (operating in initiator mode) tries to select a target and is reselected by another. The Select SCRIPTS instruction has an alternate address to which the SCRIPTS will jump when this situation occurs. The analogous situation for target devices is being selected while trying to perform a reselection.

Once a change in operating mode occurs, the initiator SCRIPTS should start with a Set Initiator instruction or the target SCRIPTS should start with a Set Target instruction. The Selection and Reselection Enable bits (SCID bits 5 and 6, respectively) should both be set so that the SYM53C810A may respond as an initiator or as a target. If only selection is enabled, the SYM53C810A cannot be reselected as an initiator. There are also status and interrupt bits in the SIST0 and SIEN0 registers, respectively, indicating that the SYM53C810A has been selected (bit 5) or reselected (bit 4).
Figure 2-3: Active or Regulated Termination

Key

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>10 µF SMT</td>
</tr>
<tr>
<td>C2</td>
<td>0.1 µF SMT</td>
</tr>
<tr>
<td>J1</td>
<td>68-pin, high density “P” connector</td>
</tr>
</tbody>
</table>
Synchronous Operation

The SYM 53C810A can transfer synchronous SCSI data in both initiator and target modes. The SXFER register controls both the synchronous offset and the transfer period. It may be loaded by the CPU before SCRIPTS execution begins, from within SCRIPTS via a Table Indirect I/O instruction, or with a Read-Modify-Write instruction.

The SYM 53C810A can receive data from the SCSI bus at a synchronous transfer period as short as 80 ns or 160 ns (with a 50 MHz clock), regardless of the transfer period used to send data. The SYM 53C810A can receive data at one-fourth of the divided SCLK frequency. Depending on the SCLK frequency, the negotiated transfer period, and the synchronous clock divider, the SYM 53C810A can send synchronous data at intervals as short as 100 ns for fast SCSI-2 and 200 ns for SCSI-1.

Determining the Data Transfer Rate

Synchronous data transfer rates are controlled by bits in two different registers of the SYM 53C810A. A brief description of the bits is provided below. Figure 2-4 illustrates the clock division factors used in each register, and the role of the register bits in determining the transfer rate.

SCNTL3 Register, bits 6–4 (SCF2–0)

The SCF2-0 bits select the factor by which the frequency of SCLK is divided before being presented to the synchronous SCSI control logic. The output from this divider controls the rate at which data can be received; this rate must not exceed 50 MHz. The receive rate is 1/4 of the divider output. For example, if SCLK is 40 MHz and the SCF value is set to divide by one, then the maximum rate at which data can be received is 10 MB/s (40/(1+4) = 10).

For synchronous send, the output of the SCF divider is divided by the transfer period (XFERP) bits in the SXFER register. For valid combinations of the SCF and the XFERP, see Table 5-4 and Table 5-5, under the description of the XFERP bits 7-5 in the SXFER register.

SXFER Register, bits 7–5 (TP2–0)

The TP2-0 divider (XFERP) bits determine the SSI synchronous send rate in either initiator or target mode. This value further divides the output from the SCF divider.

Achieving Optimal SCSI Send Rates

To achieve optimal synchronous SCSI send timings, the SCF divisor value should be set high, to divide the clock as much as possible before presenting the clock to the TP divider bits in the SXFER register. The TP2-0 divider value should be as low as possible. For example, with 40 MHz clock to achieve a 5 MB/s send rate, the SCF bits can be set to divide by 1 and the TP bits to divide by 8; or the SCF bits can be set to divide by 2 and the TP bits set to divide by 4. Use the second option to achieve optimal SCSI timings.
Functional Description

Synchronous Operation

Figure 2-4: Determining the Synchronous Transfer Rate

<table>
<thead>
<tr>
<th>SCF2</th>
<th>SCF1</th>
<th>SCF0</th>
<th>SCF Divisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1.5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TP2</th>
<th>TP1</th>
<th>TP0</th>
<th>XFERP Divisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
</tbody>
</table>

Example:

SCLK = 40 MHz, SCF = 1/(1), XFERP = 0/(4), CCF = 3(37.51-50.00 MHz)

Synchronous send rate = \(\frac{\text{SCLK}}{\text{SCF}} / \text{XFERP} = \frac{40}{1} / 4 = 10 \text{ M B/s} \)

Synchronous receive rate = \(\frac{\text{SCLK}}{\text{SCF}} / 4 = \frac{40}{1} / 4 = 10 \text{ M B/s} \)
Interrupt Handling

The SCRIPTS processor in the SYM 53C810A performs most functions independently of the host microprocessor. However, certain interrupt situations must be handled by the external microprocessor. This section explains all aspects of interrupts as they apply to the SYM 53C810A.

Polling and Hardware Interrupts

The external microprocessor is informed of an interrupt condition by polling or hardware interrupts. Polling means that the microprocessor must continually loop and read a register until it detects a bit set that indicates an interrupt. This method is the fastest, but it wastes CPU time that could be used for other system tasks. The preferred method of detecting interrupts in most systems is hardware interrupts. In this case, the SYM 53C810A will assert the Interrupt Request (IRQ/) line that will interrupt the microprocessor, causing the microprocessor to execute an interrupt service routine. A hybrid approach would use hardware interrupts for long waits, and use polling for short waits.

Registers

The registers in the SYM 53C810A that are used for detecting or defining interrupts are the ISTAT, SIST0, SIST1, DSTAT, SIEN0, SIEN1, DCNTL, and DIEN.

ISTAT

The ISTAT is the only register that can be accessed as a slave during SCRIPTS operation, therefore it is the register that is polled when polled interrupts are used. It is also the first register that should be read when the IRQ/ pin has been asserted in association with a hardware interrupt. The INTF (Interrupt on the Fly) bit should be the first interrupt serviced. It must be written to one to be cleared. This interrupt must be cleared before servicing any other interrupts. If the SIP bit in the ISTAT register is set, then a SCSI-type interrupt has occurred and the SIST0 and SIST1 registers should be read. If the DIP bit in the ISTAT register is set, then a DMA-type interrupt has occurred and the DSTAT register should be read. SCSI-type and DMA-type interrupts may occur simultaneously, so in some cases both SIP and DIP may be set.

SIST0 and SIST1

The SIST0 and SIST1 registers contain the SCSI-type interrupt bits. Reading these registers will determine which condition or conditions caused the SCSI-type interrupt, and will clear that SCSI interrupt condition. If the SYM 53C810A is receiving data from the SCSI bus and a fatal interrupt condition occurs, the SYM 53C810A will attempt to send the contents of the DMA FIFO to memory before generating the interrupt. If the SYM 53C810A is sending data to the SCSI bus and a fatal SCSI interrupt condition occurs, data could be left in the DMA FIFO. Because of this, the DMA FIFO Empty (DFE) bit in DSTAT should be checked. If this bit is clear, set the CLF (Clear DMA FIFO) and CSF (Clear SCSI FIFO) bits before continuing. The CLF bit is bit 2 in CTEST3. The CSF bit is bit 1 in STEST3.

DSTAT

The DSTAT register contains the DMA-type interrupt bits. Reading this register will determine which condition or conditions caused the DMA-type interrupt, and will clear that DMA interrupt condition. The DFE bit, bit 7 in DSTAT, is purely a status bit; it will not generate an interrupt under any circumstances and will not be cleared when read. DMA interrupts will flush neither the DMA nor SCSI FIFOs before generating the interrupt, so the DFE bit in the DSTAT register should be checked after any DMA interrupt. If the DFE bit is clear, then the FIFOs must be cleared by setting the CLF (Clear DMA FIFO) and CSF (Clear SCSI FIFO) bits, or flushed by setting the FLF (Flush DMA FIFO) bit.
Interrupt Handling

SIEN0 and SIEN1

The SIEN0 and SIEN1 registers are the interrupt enable registers for the SCSI interrupts in SIST0 and SIST1.

DIEN

The DIEN register is the interrupt enable register for DMA interrupts in DSTAT.

DCNTL

When bit 1 in this register is set, the IRQ/ pin will not be asserted when an interrupt condition occurs. The interrupt is not lost or ignored, but merely masked at the pin. Clearing this bit when an interrupt is pending will immediately cause the IRQ/ pin to assert. As with any register other than ISTAT, this register cannot be accessed except by a SCRIPTS instruction during SCRIPTS execution.

Fatal vs. Non-Fatal Interrupts

A fatal interrupt, as the name implies, always causes SCRIPTS to stop running. All non-fatal interrupts become fatal when they are enabled by setting the appropriate interrupt enable bit. For more information on interrupt masking, see the discussion on masking later in this section. All DMA interrupts (indicated by the DIP bit in ISTAT and one or more bits in DSTAT being set) are fatal.

Some SCSI interrupts (indicated by the SIP bit in the ISTAT and one or more bits in SIST0 or SIST1 being set) are non-fatal. When the SYM 53C810A is operating in initiator role, only the Function Complete (CMP), Selected (SEL), Reselected (RSL), General Purpose Timer Expired (GEN), and Handshake to Handshake Timer Expired (HTH) interrupts are non-fatal. When operating in target role CMP, SEL, RSL, Target mode: SATN/active (M/A), GEN, and HTH are non-fatal. Refer to the description for the Disable Halt on a Parity Error or SATN/active (Target Mode Only) (DHP) bit in the SCNTL1 register to configure the chip's behavior when the SATN/ interrupt is enabled during target role operation.

The reason for non-fatal interrupts is to prevent SCRIPTS from stopping when an interrupt occurs that does not require service from the CPU. This prevents an interrupt when arbitration is complete (CMP set), when the SYM 53C810A has been selected or reselected (SEL or RSL set), when the initiator has asserted ATN (target mode: SATN/active), or when the General Purpose or Handshake to Handshake timers expire. These interrupts do not require CPU intervention during high-level SCRIPTS operation.

Masking

Masking an interrupt means disabling or ignoring that interrupt. Interrupts can be masked by clearing bits in the SIEN0 and SIEN1 (for SCSI interrupts) registers or the DIEN (for DMA interrupts) register. How the chip will respond to masked interrupts depends on: whether polling or hardware interrupts are being used; whether the interrupt is fatal or non-fatal; and whether the chip is operating in initiator or target role.

If a non-fatal interrupt is masked and that condition occurs, SCRIPTS will not stop, the appropriate bit in the SIST0 or SIST1 will still be set, the SIP bit in the ISTAT will not be set, and the IRQ/ pin will not be asserted. See the section on non-fatal vs. fatal interrupts for a list of the non-fatal interrupts.

If a fatal interrupt is masked and that condition occurs, then SCRIPTS will still stop, the appropriate bit in the DSTAT, SIST0, or SIST1 register will be set, and the SIP or DIP bits in the ISTAT will be set, but the IRQ/ pin will not be asserted.

When the chip is initialized, enable all fatal interrupts if you are using hardware interrupts. If a fatal interrupt is disabled and that interrupt condition
occurs, SCRIPTS will halt and the system will never know it unless it times out and checks the ISTAT after a certain period of inactivity.

If you are polling the ISTAT instead of using hardware interrupts, then masking a fatal interrupt will make no difference since the SIP and DIP bits in the ISTAT inform the system of interrupts, not the IRQ/ pin.

Masking an interrupt after IRQ/ is asserted will not cause IRQ/ to be deasserted.

Stacked Interrupts

The SYM53C810A stacks interrupts if they occur one after another. If the SIP or DIP bits in the ISTAT register are set (first level), then there is already at least one pending interrupt, and any future interrupts will be stacked in extra registers behind the SIST0, SIST1, and DSTAT registers (second level). When two interrupts have occurred and the two levels of the stack are full, any further interrupts will set additional bits in the extra registers behind SIST0, SIST1, and DSTAT. When the first level of interrupts are cleared, all the interrupts that came in afterward will move into the SIST0, SIST1, and DSTAT. After the first interrupt is cleared by reading the appropriate register, the IRQ/ pin will be deasserted for a minimum of three CLKs; the stacked interrupt(s) will move into the SIST0, SIST1, or DSTAT; and the IRQ/ pin will be asserted once again.

Since a masked non-fatal interrupt will not set the SIP or DIP bits, interrupt stacking will not occur. A masked, non-fatal interrupt will still post the interrupt in SIST0, but will not assert the IRQ/ pin. Since no interrupt is generated, future interrupts will move right into the SIST0 or SIST1 instead of being stacked behind another interrupt. When another condition occurs that generates an interrupt, the bit corresponding to the earlier masked non-fatal interrupt will still be set.

A related situation to interrupt stacking is when two interrupts occur simultaneously. Since stacking does not occur until the SIP or DIP bits are set, there is a small timing window in which multiple interrupts can occur but will not be stacked. These could be multiple SCSI interrupts (SIP set), multiple DMA interrupts (DIP set), or multiple SCSI and multiple DMA interrupts (both SIP and DIP set).

As previously mentioned, DMA interrupts will not attempt to flush the FIFOs before generating the interrupt. It is important to set the Clear DMA FIFO (CLF) and Clear SCSI FIFO (CSF) bits if a DMA interrupt occurs and the DMA FIFO Empty (DFE) bit is not set. This is because any future SCSI interrupts will not be posted until the DMA FIFO is clear of data. These 'locked out' SCSI interrupts will be posted as soon as the DMA FIFO is empty.

Halting in an Orderly Fashion

When an interrupt occurs, the SYM53C810A will attempt to halt in an orderly fashion.

- If the interrupt occurs in the middle of an instruction fetch, the fetch will be completed, except in the case of a Bus Fault. Execution will not begin, but the DSP will point to the next instruction since it is updated when the current instruction is fetched.

- If the DMA direction is a write to memory and a SCSI interrupt occurs, the SYM53C810A will attempt to flush the DMA FIFO to memory before halting. Under any other circumstances only the current cycle will be completed before halting, so the DFE bit in DSTAT should be checked to see if any data remains in the DMA FIFO.

- SCSI SREQ/SACK handshakes that have begun will be completed before halting.

- The SYM53C810A will attempt to clean up any outstanding synchronous offset before halting.

- In the case of Transfer Control Instructions, once instruction execution begins it will continue to completion before halting.
Interrupt Handling

- If the instruction is a JUMP/CALL WHEN/IF <phase>, the DSP will be updated to the transfer address before halting.
- All other instructions may halt before completion.

Sample Interrupt Service Routine

The following is a sample of an interrupt service routine for the SYM53C810A. It can be repeated if polling is used, or should be called when the IRQ/ pin is asserted if hardware interrupts are used.

1. Read ISTAT.

2. If the INTF bit is set, it must be written to a one to clear this status.

3. If only the SIP bit is set, read SIST0 and SIST1 to clear the SCSI interrupt condition and get the SCSI interrupt status. The bits in the SIST0 and SIST1 tell which SCSI interrupt(s) occurred and determine what action is required to service the interrupt(s).

4. If only the DIP bit is set, read the DSTAT to clear the interrupt condition and get the DMA interrupt status. The bits in the DSTAT will tell which DMA interrupt(s) occurred and determine what action is required to service the interrupt(s).

5. If both the SIP and DIP bits are set, read SIST0, SIST1, and DSTAT to clear the SCSI and DMA interrupt condition and get the interrupt status. If using 8-bit reads of the SIST0, SIST1, and DSTAT registers to clear interrupts, insert a 12 CLK delay between the consecutive reads to ensure that the interrupts clear properly. Both the SCSI and DMA interrupt conditions should be handled before leaving the ISR. It is recommended that the DMA interrupt be serviced before the SCSI interrupt, because a serious DMA interrupt condition could influence how the SCSI interrupt is acted upon.

6. When using polled interrupts, go back to step 1 before leaving the interrupt service routine, in case any stacked interrupts moved in when the first interrupt was cleared. When using hardware interrupts, the IRQ/ pin will be asserted again if there are any stacked interrupts. This should cause the system to re-enter the interrupt service routine.
Chapter 3
PCI Functional Description

PCI Addressing

There are three types of PCI-defined address space:

- Configuration space
- Memory space
- I/O space

Configuration space is a contiguous 256-byte set of addresses dedicated to each “slot” or “stub” on the bus. Decoding C_BE/(3-0) determines if a PCI cycle is intended to access configuration register space. The IDSEL bus signal is a chip select that allows access to the configuration register space only. Any attempt to access configuration space will be ignored unless IDSEL is asserted. The eight lower order address lines and byte enables are used to select a specific 8-bit register. The host processor uses this configuration space to initialize the SYM53C810A. Figure 3-1 contains a list of the PCI configuration registers supported in the SYM53C810A.

The lower 128 bytes of the SYM53C810A configuration space hold system parameters while the upper 128 bytes map into the SYM53C810A operating registers. For all PCI cycles except configuration cycles, the SYM53C810A registers are located on the 256-byte block boundary defined by the base address assigned through the configured register. The SYM53C810A operating registers are available in both the upper and lower 128-byte portions of the 256-byte space selected.

At initialization time, each PCI device is assigned a base address (in the case of the SYM53C810A, the upper 24 bits of the address are used) for memory accesses and I/O accesses. On every access, the SYM53C810A compares its assigned base addresses with the value on the Address/Data bus during the PCI address phase. If there is a match of the upper 24 bits, the access is for the SYM53C810A and the low order eight bits define the register to be accessed. A decode of C_BE/(3-0) determines which registers and what type of access is to be performed.

PCI defines memory space as a contiguous 32-bit memory address that is shared by all system resources, including the SYM53C810A. Base Address Register One determines which 256-byte memory area this device will occupy.

PCI defines I/O space as a contiguous 32-bit I/O address that is shared by all system resources, including the SYM53C810A. Base Address Register Zero determines which 256-byte I/O area this device will occupy.

PCI Bus Commands and Functions Supported

Bus commands indicate to the target the type of transaction the master is requesting. Bus commands are encoded on the C_BE/(3-0) lines during the address phase. PCI bus command encoding and types appear in Table 3-1.

The I/O Read command is used to read data from an agent mapped in I/O address space. All 32 address bits are decoded.

The I/O Write command is used to write data to an agent when mapped in I/O address space. All 32 address bits are decoded.
The Memory Read, Memory Read Multiple, and Memory Read Line commands are used to read data from an agent mapped in memory address space. All 32 address bits are decoded.

The Memory Write and Memory Write and Invalidate commands are used to write data to an agent when mapped in memory address space. All 32 address bits are decoded.

PCI Cache Mode

The SYM53C810A supports the PCI specification for an 8-bit Cache Line Size register located in PCI configuration space. The Cache Line Size register provides the ability to sense and react to non-aligned addresses corresponding to cache line boundaries. In conjunction with the Cache Line Size register, the PCI commands Read Line, Read Multiple, and Write and Invalidate are each software enabled or disabled to allow the user full flexibility in using these commands.

Support for PCI Cache Line Size Register

The SYM3C810A supports the PCI specification for an 8-bit Cache Line Size register in PCI configuration space; it can sense and react to non-aligned addresses corresponding to cache line boundaries.

Selection of Cache Line Size

The cache logic will select a cache line size based on the values for the burst size in the DMODE register and the PCI Cache Line Size register.

Note: The SYM53C810A will not automatically use the value in the PCI Cache Line Size register as the cache line size value. The chip scales the value of the Cache Line Size register down to the nearest binary burst size allowed by the chip (2, 4, 8 or 16), compares this value to the DMODE burst size, then selects the smallest as the value for the cache line size. The SYM53C810A will use this value for all burst data transfers.

Alignment

The SYM53C810A uses the calculated burst size value to monitor the current address for alignment to the cache line size. When it is not aligned the chip disables bursting, allowing only single dword transfers until a cache line boundary is reached. When the chip is aligned, bursting is re-enabled and it will burst in increments specified by the Cache Line Size register as explained above. If the Cache Line Size register is not set (default = 00h), the DMODE burst size is automatically used as the cache line size.

MMOV Misalignment

The SYM53C810A will not operate in a cache alignment mode when a MMOV instruction is issued and the read and write addresses are different distances from the nearest cache line boundary. For example, if the read address is 0x21F and the write address is 0x42F, and the cache line size is eight (8), the addresses are byte aligned, but they are not the same distance from the nearest cache boundary. The read address is 1 byte from the cache boundary 0x220 and the write address is 17 bytes from the cache boundary 0x440. In this situation, the chip will not align to cache boundaries and will operate as an SYM53C810.
Memory Write and Invalidate Command

The Memory Write and Invalidate command is identical to the Memory Write command, except that it additionally guarantees a minimum transfer of one complete cache line; i.e., the master intends to write all bytes within the addressed cache line in a single PCI transaction unless interrupted by the target. This command requires implementation of the PCI Cache Line Size register at address 0Ch in PCI configuration space. The SYM53C810A enables Memory Write and Invalidate cycles when bit 0 in the CTEST3 register (WRIE) and bit 4 in the PCI Command register are set. This will cause Memory Write and Invalidate commands to be issued when the following conditions are met:

1. The CLSE bit, WRIE bit, and PCI Config Command register, bit 4 must be set.
2. The cache line size register must contain a legal burst size (2, 4, 8 or 16) value AND that value must be less than or equal to the DMODE burst size.
3. The chip must have enough bytes in the DMA FIFO to complete at least one full cache line burst.
4. The chip must be aligned to a cache line boundary.

When these conditions have been met, the SYM53C810A will issue a Write and Invalidate command instead of a Memory Write command during all PCI write cycles.

Multiple Cache Transfers

When multiple cache lines of data have been read in during a MMOV instruction (See the description for the Read Multiple command), the SYM53C810A will issue a Write and Invalidate command using the burst size necessary to transfer all the data in one transfer. For example, if the cache line size is 4, and the chip read in 16 dwords of data using a Read Multiple command, the chip will switch the burst size to 16, and issue a Write and Invalidate to transfer all 16 dwords in one bus ownership.

Latency

In accordance with the PCI specification, the chip's latency timer will be ignored when issuing a Write and Invalidate command such that when a latency time-out has occurred, the SYM53C810A will continue to transfer up until a cache line boundary. At that point, the chip will relinquish the bus, and finish the transfer at a later time using another bus ownership. If the chip is transferring multiple cache lines it will continue to transfer until the next cache boundary is reached.

PCI Target Retries

During a Write and Invalidate transfer, if the target device issues a retry (STOP with no TRDY, indicating that no data was transferred), the SYM53C810A will relinquish the bus and immediately try to finish the transfer on another bus ownership. The chip will issue another Write and Invalidate command on the next ownership, in accordance with the PCI specification.

PCI Target Disconnect

During a Write and Invalidate transfer, if the target device issues a disconnect the SYM53C810A will relinquish the bus and immediately try to finish the transfer on another bus ownership. The chip will not issue another Write and Invalidate command on the next ownership.
Memory Read Line Command

This command is identical to the Memory Read command, except that it additionally indicates that the master intends to fetch a complete cache line. This command is intended to be used with bulk sequential data transfers where the memory system and the requesting master might gain some performance advantage by reading up to a cache line boundary rather than a single memory cycle. The Read Line mode function that exists in the previous SYM53C8XX chips has been modified in the SYM53C810A to reflect the PCI cache line size register specifications. The functionality of the Enable Read Line bit (bit 3 in DMODE) has been modified to more resemble the Write and Invalidate mode in terms of conditions that must be met before a Read Line command will be issued. However, the Read Line option will operate exactly like the previous SYM53C8XX chips when cache mode has been disabled by a CLSE bit reset or when certain conditions exist in the chip (explained below).

The Read Line mode is enabled by setting bit 3 in the DMODE register. If cache mode is disabled, Read Line commands will be issued on every read data transfer, except op code fetches, as in previous SYM53C8XX chips.

If cache mode has been enabled, a Read Line command will be issued on all read cycles, except op code fetches, when the following conditions have been met:

1. The CLSE and Enable Read Line bits must be set.
2. The Cache Line Size register must contain a legal burst size value (2, 4, 8 or 16) AND that value must be less than or equal to the DMODE burst size.
3. The number of bytes to be transferred at the time a cache boundary has been reached must be equal to or greater than a full cache line size.
4. The chip must be aligned to a cache line boundary.

When these conditions have been met, the chip will issue a Read Line command instead of a Memory Read during all PCI read cycles. Otherwise, it will issue a normal Memory Read command.

Memory Read Multiple Command

This command is identical to the Memory Read command except that it additionally indicates that the master may intend to fetch more than one cache line before disconnecting. The SYM53C810A supports PCI Read Multiple functionality and will issue Read Multiple commands on the PCI bus when the Read Multiple mode is enabled. This mode is enabled by setting bit 2 of the DMODE register (ERM P). The command will be issued when certain conditions have been met.

If cache mode has been enabled, a Read Multiple command will be issued on all read cycles, except op code fetches, when the following conditions have been met:

1. The CLSE and ERM P bits must be set.
2. The Cache Line Size register must contain a legal burst size value (2, 4, 8 or 16) AND that value must be less than or equal to the DMODE burst size.
3. The number of bytes to be transferred at the time a cache boundary has been reached must be equal to or greater than the DMODE burst size.
4. The chip must be aligned to a cache line boundary.

When these conditions have been met, the chip will issue a Read Multiple command instead of a Memory Read during all PCI read cycles.
Burst Size Selection

The Read Multiple command reads in multiple cache lines of data in a single bus ownership. The number of cache lines to be read is determined by the DMODE burst size bits. In other words, the chip will switch its normal operating burst size to reflect the DMODE burst size settings for the Read Multiple command. For example, if the cache line size is 4, and the DMODE burst size is 16, the chip will switch the current burst size from 4 to 16, and issue a Read Multiple. After the transfer, the chip will then switch the burst size back to the normal operating burst size of 4.

Read Multiple with Read Line Enabled

When both the Read Multiple and Read Line modes have been enabled, the Read Line command will not be issued if the above conditions are met. Instead, a Read Multiple command will be issued, even though the conditions for Read Line have been met.

If the Read Multiple mode is enabled and the Read Line mode has been disabled, Read Multiple commands will still be issued if the Read Multiple conditions are met.

Unsupported PCI Commands

The SYM53C810A does not respond to reserved commands, special cycle, dual address cycle, or interrupt acknowledge commands as a slave. It will never generate these commands as a master.

<table>
<thead>
<tr>
<th>C_BE(3-0)</th>
<th>Command Type</th>
<th>Supported as Master</th>
<th>Supported as Slave</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>Interrupt Acknowledge</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0001</td>
<td>Special Cycle</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0010</td>
<td>I/O Read Cycle</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>0011</td>
<td>I/O Write Cycle</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>0100</td>
<td>Reserved</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>0101</td>
<td>Reserved</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>0110</td>
<td>Memory Read</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>0111</td>
<td>Memory Write</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1000</td>
<td>Reserved</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>1001</td>
<td>Reserved</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>1010</td>
<td>Configuration Read</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>1011</td>
<td>Configuration Write</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>1100</td>
<td>Memory Read Multiple</td>
<td>Yes</td>
<td>No (defaults to 0110)</td>
</tr>
<tr>
<td>1101</td>
<td>Dual Address Cycle</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>1110</td>
<td>Memory Read Line</td>
<td>Yes</td>
<td>No (defaults to 0110)</td>
</tr>
<tr>
<td>1111</td>
<td>Memory Write and Invalidate</td>
<td>Yes</td>
<td>No (defaults to 0111)</td>
</tr>
</tbody>
</table>
Configuration Registers

The Configuration registers are accessible only by system BIOS during PCI configuration cycles, and are not available to the user at any time. No other cycles, including SCRIPTS operations, can access these registers.

The lower 128 bytes hold configuration data while the upper 128 bytes hold the SYM53C810A operating registers, which are described in Chapter Five, “Operating Registers.” The operating registers can be accessed by SCRIPTS or the host processor.

Note: the configuration register descriptions are provided for general information only, to indicate which PCI configuration addresses are supported in the SYM53C810A.

For detailed information, refer to the PCI Specification.

Figure 3-1 shows the PCI configuration registers implemented by the SYM53C810A. Addresses 40h through 7Fh are not defined.

All PCI-compliant devices, such as the SYM53C810A, must support the Vendor ID, Device ID, Command, and Status Registers. Support of other PCI-compliant registers is optional. In the SYM53C810A, registers that are not supported are not writable and return all zeroes when read. Only those registers and bits that are currently supported by the SYM53C810A are described in this chapter. For more detailed information on PCI registers, please see the PCI Specification.

<table>
<thead>
<tr>
<th>31</th>
<th>16</th>
<th>15</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device ID = 0001h</td>
<td>Vendor ID = 1000h</td>
<td>00h</td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>Command</td>
<td>04h</td>
<td></td>
</tr>
<tr>
<td>Class Code = 010000h</td>
<td>Rev ID = 01h</td>
<td>08h</td>
<td></td>
</tr>
<tr>
<td>Not Supported</td>
<td>Header Type</td>
<td>Latency Timer</td>
<td>Cache Line Size</td>
</tr>
<tr>
<td>Base Address Zero (I/O)*</td>
<td>10h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base Address One (Memory)**</td>
<td>14h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Supported</td>
<td>18h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Supported</td>
<td>1Ch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Supported</td>
<td>20h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Supported</td>
<td>24h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td>28h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td>2Ch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td>30h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td>34h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td>38h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max_Lat</td>
<td>Min_Gnt</td>
<td>Interrupt Pin</td>
<td>Interrupt Line</td>
</tr>
</tbody>
</table>

* I/O Base is supported
** Memory Base is supported

Note: Addresses 40h to 7Fh are not defined. All unsupported registers are not writable and will return all zeroes when read. Reserved registers will also return zeroes when read.
Register 00h
Vendor ID
Read Only
This field identifies the manufacturer of the device. Symbios Logic Vendor ID is 1000h.

Register 02h
Device ID
Read Only
This field identifies the particular device. The SYM53C810A device ID is 0001h.

Register 04h
Command
Read/Write
The Command Register, illustrated in Figure 3-2, provides coarse control over a device's ability to generate and respond to PCI cycles. When a zero is written to this register, the SYM53C810A is logically disconnected from the PCI bus for all accesses except configuration accesses.

In the SYM53C810A, bits 3, 5, 7, and 9 are not implemented. Bits 10 through 15 are reserved.

Bits 15-10 Reserved

Bit 8 SERR/Enable
This bit enables the SERR/ driver. SERR/ is disabled when this bit is clear. The default value of this bit is zero. This bit and bit 6 must be set to report address parity errors.

Bit 6 Enable Parity Error Response
This bit allows the SYM53C810A to detect parity errors on the PCI bus and report these errors to the system. Only data parity checking is enabled. The SYM53C810A always generates parity for the PCI bus.

Bit 4 Write and Invalidate Mode
This bit, when set, will cause Memory Write and Invalidate cycles to be issued on the PCI bus after certain conditions have been met. For more information on these conditions, refer to the section "Memory Write and Invalidate Command." To enable Write and Invalidate Mode, bit 0 in the CTEST3 register (Operating registers) must also be set.

Bit 2 Enable Bus Mastering
This bit controls the SYM53C810A's ability to act as a master on the PCI bus. A value of zero disables the device from generating PCI bus master accesses. A value of one allows the SYM53C810A to behave as a bus master. The SYM53C810A must be a bus master in order to fetch SCRIPTS instructions and transfer data.

Bit 1 Enable Memory Space
This bit controls the SYM53C810A’s response to memory space accesses. A value of zero disables the device response. A value of one allows the SYM53C810A to respond to memory space accesses at the address specified by Base Address One.

Bit 0 Enable I/O Space
This bit controls the SYM53C810A’s response to I/O space accesses. A value of zero disables the response. A value of one allows the SYM53C810A to respond to I/O space accesses at the address specified in Base Address Zero.
The Status Register, illustrated in Figure 3-3, is used to record status information for PCI bus-related events.

In the SYM 53C810A, bits 0 through 4 are reserved and bits 5, 6, 7, and 11 are not implemented by the SYM 53C810A.

Reads to this register behave normally. Writes are slightly different in that bits can be reset, but not set. A bit is reset whenever the register is written, and the data in the corresponding bit location is a one. For instance, to clear bit 15 and not affect any other bits, write the value 8000h to the register.

Bit 15 Detected Parity Error (from Slave)

This bit will be set by the SYM 53C810A whenever it detects a data parity error, even if parity error handling is disabled.

Bit 14 Signaled System Error

This bit is set whenever a device asserts the SERR/ signal.

Bit 13 Master Abort (from Master)

This bit should be set by a master device whenever its transaction (except for Special Cycle) is terminated with master-abort. All master devices should implement this bit.

Bit 12 Received Target Abort (from Master)

This bit should be set by a master device whenever its transaction is terminated with a target abort. All master devices should implement this bit.
Bits 10-9 DEVSEL/Timing

These bits encode the timing of DEVSEL/. These bits are encoded as 00b for fast, 01b for medium, 10b for slow, and 11b reserved. These bits are read only and should indicate the slowest time that a device asserts DEVSEL/ for any bus command except Configuration Read and Configuration Write. The SYM 53C810A supports 01b.

Bit 8 Data Parity Reported

This bit is set when the following three conditions are met: 1) The bus agent asserted PERR/ itself or observed PERR/ asserted; 2) The agent setting this bit acted as the bus master for the operation in which the error occurred; and 3) The Parity Error Response bit in the Command register is set.

Bits 7-6 Not Implemented

Bits 5-0 Reserved

Figure 3-3: Status Register Layout
Register 08h
Revision ID
Read Only
This register specifies device and revision identifiers. In the SYM53C810A, the upper nibble is 0001b. The lower nibble represents the current revision level of the device. It should have the same value as the Chip Revision Level bits in the CT EST 3 register.

Register 09h
Class Code
Read Only
This register is used to identify the generic function of the device. The upper byte of this register is a base class code, the middle byte is a subclass code, and the lower byte identifies a specific register-level programming interface. The value of this register is 010000h, which indicates a SCSI controller.

Register 0Ch
Cache Line Size
Read/Write
This register specifies the system cache line size in units of 32-bit words. Cache mode is enabled and disabled by the Cache Line Size Enable (CLSE) bit, bit 7 in the DCNTL register. Setting this bit causes the SYM53C810A to align to cache line boundaries before allowing any bursting, except during MM OV s in which the read and write addresses are Burst Size boundary misaligned. For more information, see “Support for PCI Cache Line Size Register” on page 3-2.

Register 0Dh
Latency Timer
Read/Write
The Latency Timer register specifies, in units of PCI bus clocks, the value of the Latency Timer for this PCI bus master. The SYM53C810A supports this timer. All eight bits are writable, allowing latency values of 0-255 PCI clocks. Use the following equation to calculate an optimum latency value for the SYM53C810A:

Latency = 2 + (Burst Size * (typical wait states +1)).
Values greater than optimum are also acceptable.
Register **0Eh**
Header Type
Read Only
This register identifies the layout of bytes 10h through 3Fh in configuration space and also whether or not the device contains multiple functions. The value of this register is 00h.

Register **10h**
Base Address Zero (I/O)
Read/Write
This 32-bit register has bit zero hardwired to one. Bit 1 is reserved and must return a zero on all reads, and the other bits are used to map the device into I/O space.

Register **14h**
Base Address One (Memory)
Read/Write
This register has bit 0 hardwired to zero. For detailed information on the operation of this register, refer to the PCI Specification.

Register **3Ch**
Interrupt Line
Read/Write
This register is used to communicate interrupt line routing information. POST software will write the routing information into this register as it initiates and configures the system. The value in this register tells which input of the system interrupt controller(s) has been connected to the device's interrupt pin. Values in this register are specified by system architecture.

Register **3Dh**
Interrupt Pin
Read Only
This register tells which interrupt pin the device uses. Its value is set to 01h, for the INTA/ signal.

Register **3 Eh**
Min_Gnt
Read Only
Register **3Fh**
Max_Lat
Read Only
These registers are used to specify the desired settings for Latency Timer values. Min_Gnt is used to specify how long a burst period the device needs. Max_Lat is used to specify how often the device needs to gain access to the PCI bus. The value specified in these registers is in units of 0.25 microseconds. Values of zero indicate that the device has no major requirements for the settings of Latency Timers. The SYM53C810A sets the Min_Gnt register to 11h and the Max_Lat register to 40h.
PCI Functional Description
Configuration Registers
Chapter 4
Signal Descriptions

This chapter presents the SYM53C810A pin configuration and signal definitions using tables and illustrations. Figure 4-1 is the pin diagram and Figure 4-2 is a functional signal grouping. The pin definitions are presented in Table 4-1 through Table 4-8. The SYM53C810A is pin-for-pin compatible with the SYM53C810.

The decoupling capacitor arrangement shown above is recommended to maximize the benefits of the internal split ground system. Capacitor values between 0.01 and 0.1μF should provide adequate noise isolation. Because of the number of high current drivers on the SYM53C810A, a multi-layer PC board with power and ground planes is required.
The PCI/SCSI pin definitions are organized into the following functional groups: Power and Ground, System, Address/Data, Interface Control, Arbitration, Error Reporting, SCSI, and Optional Interface. A slash (/) at the end of the signal name indicates that the active state occurs when the signal is at a low voltage. When the slash is absent, the signal is active at a high voltage.

There are four signal type definitions:

I Input, a standard input-only signal
O Totem Pole Output, a standard output driver
T/S Tri-State, a bi-directional, tri-state input/output pin
S/T/S Sustained Tri-state, an active low tri-state signal owned and driven by one and only one agent at a time

Table 4-1: Power and Ground Pins

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Pin No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSS-I</td>
<td>5, 9, 13, 18, 22, 26, 32, 37, 43, 87, 93, 99</td>
<td>Power supplies to the PCI I/O pins</td>
</tr>
<tr>
<td>VDD-I*</td>
<td>3, 16, 28, 40, 90</td>
<td>Power supplies to the PCI I/O pins</td>
</tr>
<tr>
<td>VSS-S</td>
<td>58, 63, 68, 73</td>
<td>Power supplies to the SCSI bus I/O pins</td>
</tr>
<tr>
<td>VDD-S</td>
<td>54, 77</td>
<td>Power supplies to the SCSI bus I/O pins</td>
</tr>
<tr>
<td>VSS-C</td>
<td>50, 81</td>
<td>Power supplies to the internal logic core</td>
</tr>
<tr>
<td>VDD-C</td>
<td>46, 84</td>
<td>Power supplies to the internal logic core</td>
</tr>
</tbody>
</table>

*These pins can accept a VDD source of 3.3 or 5 Volts. All other VDD pins must be supplied 5 Volts.
Figure 4-2: Functional Signal Grouping
Signal Descriptions

Table 4-2: System Pins

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Pin No.</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLK</td>
<td>80</td>
<td>I</td>
<td>Clock. Clock provides timing for all transactions on the PCI bus and is an input to every PCI device. All other PCI signals are sampled on the rising edge of CLK, and other timing parameters are defined with respect to this edge. This clock can optionally be used as the SCSI core clock; however, the SYM 53C810A will not achieve fast SCSI transfer rates.</td>
</tr>
<tr>
<td>RST/</td>
<td>79</td>
<td>I</td>
<td>Reset. Reset forces the PCI sequencer of each device to a known state. All t/s and s/t/s signals are forced to a high impedance state, and all internal logic is reset. The RST/ input is synchronized internally to the rising edge of CLK. The CLK input must be active while RST/ is active to properly reset the device.</td>
</tr>
</tbody>
</table>

Table 4-3: Address and Data Pins

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Pin No.</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD(31-0)</td>
<td>85, 86, 88, 89, 91, 92, 94, 95, 98, 100, 1, 2, 4, 6, 7, 8, 23, 24, 25, 27, 29, 30, 31, 33, 35, 36, 38, 39, 41, 42, 44, 45</td>
<td>T/S</td>
<td>Address/Data. Physical dword address and data are multiplexed on the same PCI pins. During the first clock of a transaction, AD(31-0) contain a physical byte address. During subsequent clocks, AD(31-0) contain data. A bus transaction consists of an address phase, followed by one or more data phases. PCI supports both read and write bursts. AD(7-0) define the least significant byte, and AD(31-24) define the most significant byte.</td>
</tr>
<tr>
<td>C_BE/(3-0)</td>
<td>96, 10, 21, 34</td>
<td>T/S</td>
<td>Command/Byte Enable. Bus command and byte enables are multiplexed on the same PCI pins. During the address phase of a transaction, C_BE/(3-0) define the bus command. During the data phase, C_BE/(3-0) are used as byte enables. The byte enables determine which byte lanes carry meaningful data. C_BE/(0) applies to byte lane 0, and C_BE/(3) to byte lane 3.</td>
</tr>
<tr>
<td>PAR</td>
<td>20</td>
<td>T/S</td>
<td>Parity. Parity is the even parity bit that protects the AD(31-0) and C_BE/(3-0) lines. During address phase, both the address and command bits are covered. During data phase, both data and byte enables are covered.</td>
</tr>
</tbody>
</table>
Table 4-4: Interface Control Pins

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Pin No.</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRAME/</td>
<td>11</td>
<td>S/T/S</td>
<td>Cycle Frame. Cycle Frame is driven by the current master to indicate the beginning and duration of an access. FRAME/ is asserted to indicate a bus transaction is beginning. While FRAME/ is asserted, data transfers continue. When FRAME/ is deasserted, the transaction is in the final data phase or the bus is idle.</td>
</tr>
<tr>
<td>TRDY/</td>
<td>14</td>
<td>S/T/S</td>
<td>Target Ready. Target Ready indicates the target agent's (selected device's) ability to complete the current data phase of the transaction. TRDY/ is used with IRDY/. A data phase is completed on any clock when both TRDY/ and IRDY/ are sampled asserted. During a read, TRDY/ indicates that valid data is present on AD(31-0). During a write, it indicates the target is prepared to accept data. Wait cycles are inserted until both IRDY/ and TRDY/ are asserted together.</td>
</tr>
<tr>
<td>IRDY/</td>
<td>12</td>
<td>S/T/S</td>
<td>Initiator Ready. Initiator Ready indicates the initiating agent's (bus master's) ability to complete the current data phase of the transaction. This signal is used with TRDY/. A data phase is completed on any clock when both IRDY/ and TRDY/ are sampled asserted. During a write, IRDY/ indicates that valid data is present on AD(31-0). During a read, it indicates the master is prepared to accept data. Wait cycles are inserted until both IRDY/ and TRDY/ are asserted together.</td>
</tr>
<tr>
<td>STOP/</td>
<td>17</td>
<td>S/T/S</td>
<td>Stop. Stop indicates that the selected target is requesting the master to stop the current transaction.</td>
</tr>
<tr>
<td>DEVSEL/</td>
<td>15</td>
<td>S/T/S</td>
<td>Device Select. Device Select indicates that the driving device has decoded its address as the target of the current access. As an input, it indicates to a master whether any device on the bus has been selected.</td>
</tr>
<tr>
<td>IDSEL</td>
<td>97 I</td>
<td></td>
<td>Initialization Device Select. Initialization Device Select is used as a chip select in place of the upper 24 address lines during configuration read and write transactions.</td>
</tr>
</tbody>
</table>

Table 4-5: Arbitration Pins

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Pin No.</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQ/</td>
<td>83</td>
<td>O</td>
<td>Request. Request indicates to the arbiter that this agent desires to use the PCI bus. This is a point-to-point signal. Every master has its own REQ/.</td>
</tr>
<tr>
<td>GNT/</td>
<td>82</td>
<td>I</td>
<td>Grant. Grant indicates to the agent that access to the PCI bus has been granted. This is a point-to-point signal. Every master has its own GNT/.</td>
</tr>
</tbody>
</table>
Table 4-6: Error Reporting Pins

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Pin No.</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERR/</td>
<td>19</td>
<td>S/T/S</td>
<td>Parity Error. Parity Error may be pulsed active by an agent that detects a parity error. PERR/ can be used by any agent to signal data corruptions. However, on detection of a PERR/ pulse, the central resource may generate a non-maskable interrupt to the host CPU, which often implies the system will be unable to continue operation once error processing is complete.</td>
</tr>
<tr>
<td>SERR/</td>
<td>78</td>
<td>O</td>
<td>System Error. This open drain output pin is used to report address parity errors.</td>
</tr>
</tbody>
</table>

Table 4-7: SCSI Pins

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Pin No.</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCLK</td>
<td>51</td>
<td>I</td>
<td>SCSI Clock. SCLK is used to derive all SCSI-related timings. The speed of this clock is determined by the application's requirements; in some applications SCLK may be sourced internally from the PCI bus clock (CLK). If SCLK is internally sourced, then the SCLK pin should be tied low.</td>
</tr>
<tr>
<td>SD(7-0), SDP</td>
<td>67, 69, 70, 71, 72, 74, 75, 76, 66</td>
<td>I/O</td>
<td>SCSI Data. SCSI Data includes the following data lines and parity signals: SD(7-0) (8-bit SCSI data bus), and SDP (SCSI data parity bit).</td>
</tr>
<tr>
<td>SCTRL/</td>
<td>57, 55, 60, 56, 62, 64, 65, 61, 59</td>
<td>I/O</td>
<td>SCSI Control. SCSI Control includes the following signals: SCD/ SCSI phase line, command/data SIO/ SCSI phase line, input/output SM SG/ SCSI phase line, message SREQ/ Data handshake signal from target device SACK/ Data handshake signal from initiator device SBSY/ SCSI bus arbitration signal, busy SATN/ SCSI Attention, the initiator is requesting a message out phase SRST/ SCSI bus reset SSEL/ SCSI bus arbitration signal, select device</td>
</tr>
</tbody>
</table>
Table 4-8: Additional Interface Pins

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Pin No.</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TESTIN/</td>
<td>52</td>
<td>I</td>
<td>Test In. When this pin is driven low, the SYM53C810A connects all inputs and outputs to an "AND tree." The SCSI control signals and data lines are not connected to the "AND tree." The output of the "AND tree" is connected to the Test Out pin. This allows manufacturers to verify chip connectivity and determine exactly which pins are not properly attached. When the TESTIN pin is driven low, internal pull-ups are enabled on all input, output, and bidirectional pins, all outputs and bidirectional signals will be tri-stated, and the MAC/_TESTOUT pin will be enabled. Connectivity can be tested by driving one of the SYM53C810A pins low. The MAC/_TESTOUT pin should respond by also driving low.</td>
</tr>
<tr>
<td>GPIO0.FETCH/</td>
<td>48</td>
<td>I/O</td>
<td>General Purpose I/O pin. Optionally, when driven low, indicates that the next bus request will be for an op code fetch. This pin powers up as a general purpose input. This pin has two specific purposes in the Symbios Logic SDMS software. SDMS uses it to toggle SCSI device LEDs, turning on the LED whenever the SYM53C810A is on the SCSI bus. SDMS drives this pin low to turn on the LED, or drives it high to turn off the LED. This signal can also be used as data I/O for serial EEPROM access. In this case it is used with the GPIO0 pin, which serves as a clock. The pin can be controlled from PCI configuration register 35h or observed from the GPREG operating register, at address 07h.</td>
</tr>
<tr>
<td>GPIO1.MASTER/</td>
<td>49</td>
<td>I/O</td>
<td>General Purpose I/O pin. Optionally, when driven low, indicates that the SYM53C810A is bus master. This pin powers up as a general purpose input. Symbios Logic SDMS software supports use of this signal in serial EPROM applications, when enabled, in combination with the GPIO0 pin. When this signal is used as a clock for serial EEPROM access, the GPIO1 pin serves as data, and the pin is controlled from PCI configuration register 35h.</td>
</tr>
<tr>
<td>MAC.TESTOUT</td>
<td>53</td>
<td>T/S</td>
<td>Memory Access Control/Test Out. This pin can be programmed to indicate local or system memory accesses (non-PCI applications). It is also used to test the connectivity of the SYM53C810A signals using an "AND tree" scheme. The MAC/_TESTOUT pin is only driven as the Test Out function when the TESTIN/ pin is driven low.</td>
</tr>
<tr>
<td>IRQ/</td>
<td>47</td>
<td>O</td>
<td>Interrupt. This signal, when asserted low, indicates that an interrupting condition has occurred and that service is required from the host CPU. The output drive of this pin is programmed as either open drain with an internal weak pull-up or, optionally, as a totem pole driver. Refer to the description of DCNTL Register, bit 3, for additional information.</td>
</tr>
</tbody>
</table>
Chapter 5
Operating Registers

This section contains descriptions of all SYM53C810A operating registers. Table 5-1 summarizes the SYM53C810A operating register set. Figure 5-1, the register map, lists registers by operating and configuration addresses. The terms “set” and “assert” are used to refer to bits that are programmed to a binary one. Similarly, the terms “deassert,” “clear” and “reset” are used to refer to bits that are programmed to a binary zero. Any bits marked as reserved should always be written to zero; mask all information read from them. Reserved bit functions may be changed at any time. Unless otherwise indicated, all bits in registers are active high, that is, the feature is enabled by setting the bit. The bottom row of every register diagram shows the default register values, which are enabled after the chip is powered on or reset.

Note: the only register that the host CPU can access while the SYM53C810A is executing SCRIPTS is the ISTAT register; attempts to access other registers will interfere with the operation of the chip. However, all operating registers are accessible with SCRIPTS. All read data is synchronized and stable when presented to the PCI bus.

Note: the SYM53C810A cannot fetch SCRIPTS instructions from the operating register space. Instructions must be fetched from system memory.

Table 5-1: Operating Register Addresses and Descriptions

<table>
<thead>
<tr>
<th>Memory or I/O Address Offset</th>
<th>PCI Configuration Address</th>
<th>Read/Write</th>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>80</td>
<td>R/W</td>
<td>SCNTL0</td>
<td>SCSI Control 0</td>
</tr>
<tr>
<td>01</td>
<td>81</td>
<td>R/W</td>
<td>SCNTL1</td>
<td>SCSI Control 1</td>
</tr>
<tr>
<td>02</td>
<td>82</td>
<td>R/W</td>
<td>SCNTL2</td>
<td>SCSI Control 2</td>
</tr>
<tr>
<td>03</td>
<td>83</td>
<td>R/W</td>
<td>SCNTL3</td>
<td>SCSI Control 3</td>
</tr>
<tr>
<td>04</td>
<td>84</td>
<td>R/W</td>
<td>SCID</td>
<td>SCSI Chip ID</td>
</tr>
<tr>
<td>05</td>
<td>85</td>
<td>R/W</td>
<td>SXFER</td>
<td>SCSI Transfer</td>
</tr>
<tr>
<td>06</td>
<td>86</td>
<td>R/W</td>
<td>SDID</td>
<td>SCSI Destination ID</td>
</tr>
<tr>
<td>07</td>
<td>87</td>
<td>R/W</td>
<td>GPREG</td>
<td>General Purpose Bits</td>
</tr>
<tr>
<td>08</td>
<td>88</td>
<td>R/W</td>
<td>SFBR</td>
<td>SCSI First Byte Received</td>
</tr>
<tr>
<td>09</td>
<td>89</td>
<td>R/W</td>
<td>SOCL</td>
<td>SCSI Output Control Latch</td>
</tr>
<tr>
<td>0A</td>
<td>8A</td>
<td>R</td>
<td>SSID</td>
<td>SCSI Selector ID</td>
</tr>
</tbody>
</table>
Table 5-1: Operating Register Addresses and Descriptions (Continued)

<table>
<thead>
<tr>
<th>Memory or I/O Address Offset</th>
<th>PCI Configuration Address</th>
<th>Read/Write</th>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0B</td>
<td>8B</td>
<td>R/W</td>
<td>SBCL</td>
<td>SCSI Bus Control Lines</td>
</tr>
<tr>
<td>0C</td>
<td>8C</td>
<td>R</td>
<td>DSTAT</td>
<td>DMA Status</td>
</tr>
<tr>
<td>0D</td>
<td>8D</td>
<td>R</td>
<td>SSTAT 0</td>
<td>SCSI Status 0</td>
</tr>
<tr>
<td>0E</td>
<td>8E</td>
<td>R</td>
<td>SSTAT 1</td>
<td>SCSI Status 1</td>
</tr>
<tr>
<td>0F</td>
<td>8F</td>
<td>R</td>
<td>SSTAT 2</td>
<td>SCSI Status 2</td>
</tr>
<tr>
<td>10-13</td>
<td>90-93</td>
<td>R/W</td>
<td>DSA</td>
<td>Data Structure Address</td>
</tr>
<tr>
<td>14</td>
<td>94</td>
<td>R/W</td>
<td>ISTAT</td>
<td>Interrupt Status</td>
</tr>
<tr>
<td>15-17</td>
<td>95-97</td>
<td>R/W</td>
<td></td>
<td>Reserved</td>
</tr>
<tr>
<td>18</td>
<td>98</td>
<td>R/W</td>
<td>CTEST 0</td>
<td>Reserved</td>
</tr>
<tr>
<td>19</td>
<td>99</td>
<td>R/W</td>
<td>CTEST 1</td>
<td>Chip Test 1</td>
</tr>
<tr>
<td>1A</td>
<td>9A</td>
<td>R</td>
<td>CTEST 2</td>
<td>Chip Test 2</td>
</tr>
<tr>
<td>1B</td>
<td>9B</td>
<td>R</td>
<td>CTEST 3</td>
<td>Chip Test 3</td>
</tr>
<tr>
<td>1C-1F</td>
<td>9C-9F</td>
<td>R/W</td>
<td>TEMP</td>
<td>Temporary Stack</td>
</tr>
<tr>
<td>20</td>
<td>A0</td>
<td>R/W</td>
<td>DFIFO</td>
<td>DMA FIFO</td>
</tr>
<tr>
<td>21</td>
<td>A1</td>
<td>R/W</td>
<td>CTEST 4</td>
<td>Chip Test 4</td>
</tr>
<tr>
<td>22</td>
<td>A2</td>
<td>R/W</td>
<td>CTEST 5</td>
<td>Chip Test 5</td>
</tr>
<tr>
<td>23</td>
<td>A3</td>
<td>R/W</td>
<td>CTEST 6</td>
<td>Chip Test 6</td>
</tr>
<tr>
<td>24-26</td>
<td>A4-A6</td>
<td>R/W</td>
<td>DBC</td>
<td>DMA Byte Counter</td>
</tr>
<tr>
<td>27</td>
<td>A7</td>
<td>R/W</td>
<td>DCM D</td>
<td>DMA Command</td>
</tr>
<tr>
<td>28-2B</td>
<td>A8-AB</td>
<td>R/W</td>
<td>DNAD</td>
<td>DMA Next Address for Data</td>
</tr>
<tr>
<td>2C-2F</td>
<td>AC-AF</td>
<td>R/W</td>
<td>DSP</td>
<td>DMA SCRIPTS Pointer</td>
</tr>
<tr>
<td>30-33</td>
<td>B0-B3</td>
<td>R/W</td>
<td>DSPS</td>
<td>DMA SCRIPTS Pointer Save</td>
</tr>
<tr>
<td>34-37</td>
<td>B4-B7</td>
<td>R/W</td>
<td>SCRATCHA</td>
<td>General Purpose Scratch Pad A</td>
</tr>
<tr>
<td>38</td>
<td>B8</td>
<td>R/W</td>
<td>DMODE</td>
<td>DMA Mode</td>
</tr>
<tr>
<td>39</td>
<td>B9</td>
<td>R/W</td>
<td>DIEN</td>
<td>DMA Interrupt Enable</td>
</tr>
<tr>
<td>3A</td>
<td>BA</td>
<td>R/W</td>
<td>SBR</td>
<td>Scratch Byte Register</td>
</tr>
<tr>
<td>3B</td>
<td>BB</td>
<td>R/W</td>
<td>DCNTL</td>
<td>DMA Control</td>
</tr>
<tr>
<td>3C-3F</td>
<td>BC-BF</td>
<td>R</td>
<td>ADDER</td>
<td>Sum output of internal adder</td>
</tr>
<tr>
<td>40</td>
<td>C0</td>
<td>R/W</td>
<td>SIEN 0</td>
<td>SCSI Interrupt Enable 0</td>
</tr>
<tr>
<td>41</td>
<td>C1</td>
<td>R/W</td>
<td>SIEN 1</td>
<td>SCSI Interrupt Enable 1</td>
</tr>
<tr>
<td>42</td>
<td>C2</td>
<td>R</td>
<td>SIST 0</td>
<td>SCSI Interrupt Status 0</td>
</tr>
<tr>
<td>43</td>
<td>C3</td>
<td>R</td>
<td>SIST 1</td>
<td>SCSI Interrupt Status 1</td>
</tr>
<tr>
<td>44</td>
<td>C4</td>
<td>R/W</td>
<td>SLPAR</td>
<td>SCSI Longitudinal Parity</td>
</tr>
</tbody>
</table>
Table 5-1: Operating Register Addresses and Descriptions (Continued)

<table>
<thead>
<tr>
<th>Memory or I/O Address Offset</th>
<th>PCI Configuration Address</th>
<th>Read/Write</th>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 C5</td>
<td>R/W</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46 C6</td>
<td>R/W</td>
<td>MACNTL</td>
<td>Memory Access Control</td>
<td></td>
</tr>
<tr>
<td>47 C7</td>
<td>R/W</td>
<td>GPCNTL</td>
<td>General Purpose Control</td>
<td></td>
</tr>
<tr>
<td>48 C8</td>
<td>R/W</td>
<td>STM E0</td>
<td>SCSI Timer 0</td>
<td></td>
</tr>
<tr>
<td>49 C9</td>
<td>R/W</td>
<td>STM E1</td>
<td>SCSI Timer 1</td>
<td></td>
</tr>
<tr>
<td>4A CA</td>
<td>R/W</td>
<td>RESPID</td>
<td>Response ID</td>
<td></td>
</tr>
<tr>
<td>4B CB</td>
<td>R/W</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4C CC</td>
<td>R</td>
<td>STEST 0</td>
<td>SCSI Test 0</td>
<td></td>
</tr>
<tr>
<td>4D CD</td>
<td>R</td>
<td>STEST 1</td>
<td>SCSI Test 1</td>
<td></td>
</tr>
<tr>
<td>4E CE</td>
<td>R/W</td>
<td>STEST 2</td>
<td>SCSI Test 2</td>
<td></td>
</tr>
<tr>
<td>4F CF</td>
<td>R/W</td>
<td>STEST 3</td>
<td>SCSI Test 3</td>
<td></td>
</tr>
<tr>
<td>50 D0</td>
<td>R</td>
<td>SIDL</td>
<td>SCSI Input Data Latch</td>
<td></td>
</tr>
<tr>
<td>51-53 D1-D3</td>
<td>R/W</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54 D4</td>
<td>R/W</td>
<td>SOD L</td>
<td>SCSI Output Data Latch</td>
<td></td>
</tr>
<tr>
<td>55-57 D5-D7</td>
<td>R/W</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58 D8</td>
<td>R</td>
<td>SBDL</td>
<td>SCSI Bus Data Lines</td>
<td></td>
</tr>
<tr>
<td>59-5B D9-DB</td>
<td>R/W</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5C-5F DC-DF</td>
<td>R/W</td>
<td>SCRATCHB</td>
<td>General Purpose Scratch Pad B</td>
<td></td>
</tr>
</tbody>
</table>
Figure 5-1: SYM53C810A Register Address Map

<table>
<thead>
<tr>
<th>Register</th>
<th>Mem I/O</th>
<th>Config</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCNTL3</td>
<td>SCNTL2</td>
<td>SCNTL1</td>
</tr>
<tr>
<td>GPREG</td>
<td>SDID</td>
<td>SXFER</td>
</tr>
<tr>
<td>SBCL</td>
<td>SSID</td>
<td>SOCL</td>
</tr>
<tr>
<td>SSTAT2</td>
<td>SSTAT1</td>
<td>SSTAT0</td>
</tr>
<tr>
<td>DSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESERVED</td>
<td>ISTAT</td>
<td></td>
</tr>
<tr>
<td>CTEST3</td>
<td>CTEST2</td>
<td>CTEST1</td>
</tr>
<tr>
<td>TEMP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTEST6</td>
<td>CTEST5</td>
<td>CTEST4</td>
</tr>
<tr>
<td>DCMD</td>
<td></td>
<td>DBC</td>
</tr>
<tr>
<td>DNAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dtps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCRATCH A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCNTL</td>
<td>SBR</td>
<td>DIEN</td>
</tr>
<tr>
<td>ADDER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIST1</td>
<td>SIST0</td>
<td>SIEN1</td>
</tr>
<tr>
<td>GPCNTL</td>
<td>MACNTL</td>
<td>RESERVED</td>
</tr>
<tr>
<td>RESERVED</td>
<td>RESPID</td>
<td>STIME1</td>
</tr>
<tr>
<td>TEST3</td>
<td>TEST2</td>
<td>TEST1</td>
</tr>
<tr>
<td>RESERVED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESERVED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESERVED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCRATCH B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Operating Registers

Register 00 (80)
SCSI Control Zero (SCNTL0)
Read/Write

<table>
<thead>
<tr>
<th>ARB1</th>
<th>ARB0</th>
<th>START</th>
<th>WATN</th>
<th>EPC</th>
<th>RES</th>
<th>AAP</th>
<th>TRG</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

**Default>>>
1 1 0 0 0 X 0 0

Bit 7 ARB1 (Arbitration mode bit 1)

Bit 6 ARB0 (Arbitration mode bit 0)

<table>
<thead>
<tr>
<th>ARB1</th>
<th>ARB0</th>
<th>Arbitration Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Simple arbitration</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Full arbitration, selection/reselection</td>
</tr>
</tbody>
</table>

Simple Arbitration

1. The SYM53C810A waits for a bus free condition to occur.

2. It asserts SBSY/ and its SCSI ID (contained in the SCID register) onto the SCSI bus. If the SSEL/ signal is asserted by another SCSI device, the SYM53C810A will deassert SBSY/, deassert its ID, and set the Lost Arbitration bit (bit 3) in the SSTAT0 register.

3. After an arbitration delay, the CPU should read the SBDL register to check if a higher priority SCSI ID is present. If no higher priority ID bit is set, and the Lost Arbitration bit is not set, the SYM53C810A has won arbitration.

4. Once the SYM53C810A has won arbitration, SSEL/ must be asserted via the SOCL for a bus clear plus a bus settle delay (1.2 µs) before a low level selection can be performed.

Full Arbitration, Selection/Reselection

1. The SYM53C810A waits for a bus free condition.

2. It asserts SBSY/ and its SCSI ID (stored in the SCID register) onto the SCSI bus.

3. If the SSEL/ signal is asserted by another SCSI device or if the SYM53C810A detects a higher priority ID, the SYM53C810A will deassert BSY, deassert its ID, and wait until the next bus free state to try arbitration again.

4. The SYM53C810A repeats arbitration until it wins control of the SCSI bus. When it has won, the Won Arbitration bit is set in the SSTAT0 register, bit 2.

5. The SYM53C810A performs selection by asserting the following onto the SCSI bus: SSEL/, the target’s ID (stored in the SDID register), and the SYM53C810A’s ID (stored in the SCID register).

6. After a selection is complete, the Function Complete bit is set in the SIST0 register, bit 6.

7. If a selection time-out occurs, the Selection Time-Out bit is set in the SIST1 register, bit 2.

Bit 5 START (Start sequence)

When this bit is set, the SYM53C810A will start the arbitration sequence indicated by the Arbitration Mode bits. The Start Sequence bit is accessed directly in low-level mode; during SCSI SCRIPTS operations, this bit is controlled by the SCRIPTS processor. An arbitration sequence should not be started if the connected (CON) bit in the SCNTL1 register, bit 4, indicates that the SYM53C810A is already connected to the SCSI bus. This bit is automatically cleared when the arbitration sequence is complete. If a sequence is aborted, bit 4 in the SCNTL1 register should be checked to verify that the SYM53C810A did not connect to the SCSI bus.
Bit 4 WATN (Select with SATN/ on a start sequence)
When this bit is set and the SYM53C810A is in initiator mode, the SATN/ signal will be asserted during SYM53C810A selection of a SCSI target device. This is to inform the target that the SYM53C810A has a message to send. If a selection time-out occurs while attempting to select a target device, SATN/ will be deasserted at the same time SSEL/ is deasserted. When this bit is clear, the SATN/ signal will not be asserted during selection. When executing SCRIPTS, this bit is controlled by the SCRIPTS processor, but it may be set manually in low level mode.

Bit 3 EPC (Enable parity checking)
When this bit is set, the SCSI data bus is checked for odd parity when data is received from the SCSI bus in either initiator or target mode. If a parity error is detected, bit 0 of the SIST0 register is set and an interrupt may be generated.

If the SYM53C810A is operating in initiator mode and a parity error is detected, SATN/ can optionally be asserted, but the transfer continues until the target changes phase. When this bit is cleared, parity errors are not reported.

Bit 2 Reserved

Bit 1 AAP (Assert SATN/ on parity error)
When this bit is set, the SYM53C810A automatically asserts the SATN/ signal upon detection of a parity error. SATN/ is only asserted in initiator mode. The SATN/ signal is asserted before deasserting SACK/ during the byte transfer with the parity error. The Enable Parity Checking bit must also be set for the SYM53C810A to assert SATN/ in this manner. A parity error is detected on data received from the SCSI bus.

If the Assert SATN/ on Parity Error bit is cleared or the Enable Parity Checking bit is cleared, SATN/ will not be automatically asserted on the SCSI bus when a parity error is received.

Bit 0 TRG (Target role)
This bit determines the default operating role of the SYM53C810A. The user must manually set target or initiator role. This can be done using the SCRIPTS language (SET TARGET or CLEAR TARGET). When this bit is set, the chip is a target device by default. When this bit is cleared, the SYM53C810A is an initiator device by default.

CAUTION:
Writing this bit while not connected may cause the loss of a selection or reselection due to the changing of target or initiator roles.
Register 01 (81)
SCSI Control One (SCNTL1)
Read/Write

<table>
<thead>
<tr>
<th>EXC</th>
<th>ADB</th>
<th>DHP</th>
<th>CON</th>
<th>RST</th>
<th>AESP</th>
<th>IARB</th>
<th>SST</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Default: 00000000

Bit 7 EXC (Extra clock cycle of data setup)
When this bit is set, an extra clock period of data setup is added to each SCSI data send transfer. The extra data setup time can provide additional system design margin, though it will affect the SCSI transfer rates. Clearing this bit disables the extra clock cycle of data setup time. Setting this bit only affects SCSI send operations.

Bit 6 ADB (Assert SCSI data bus)
When this bit is set, the SYM53C810A drives the contents of the SCSI Output Data Latch Register (SODL) onto the SCSI data bus. When the SYM53C810A is an initiator, the SCSI I/O signal must be inactive to assert the SODL contents onto the SCSI bus. When the SYM53C810A is a target, the SCSI I/O signal must be active for the SODL contents to be asserted onto the SCSI bus. The contents of the SODL register can be asserted at any time, even before the SYM53C810A is connected to the SCSI bus. This bit should be cleared when executing SCSI SCRIPTS. It is normally used only for diagnostics testing or operation in low level mode.

Bit 5 DHP (Disable Halt on Parity Error or ATN) (Target Only)
The DHP bit is only defined for target role. When this bit is cleared, the SYM53C810A halts the SCSI data transfer when a parity error is detected or when the SAT N/ signal is asserted. If SAT N/ or a parity error is received in the middle of a data transfer, the SYM53C810A may transfer up to three additional bytes before halting to synchronize between internal core cells. During synchronous operation, the SYM53C810A transfers data until there are no outstanding synchronous offsets. If the SYM53C810A is receiving data, any data residing in the DMA FIFO is sent to memory before halting.

When this bit is set, the SYM53C810A does not halt the SCSI transfer when SAT N/ or a parity error is received.

Bit 4 CON (Connected)
This bit is automatically set any time the SYM53C810A is connected to the SCSI bus as an initiator or as a target. It is set after the SYM53C810A successfully completes arbitration or when it has responded to a bus initiated selection or reselection. This bit is also set after the chip wins simple arbitration when operating in low level mode. When this bit is clear, the SYM53C810A is not connected to the SCSI bus.

The CPU can force a connected or disconnected condition by setting or clearing this bit. This feature would be used primarily during loopback mode.

Bit 3 RST (Assert SCSI RST/ signal)
Setting this bit asserts the SRST/ signal. The SRST/ output remains asserted until this bit is cleared. The 25 µs minimum assertion time defined in the SCSI specification must be timed out by the controlling microprocessor or a SCRIPTS loop.

Bit 2 AESP (Assert even SCSI parity (force bad parity))
When this bit is set, the SYM53C810A asserts even parity. It forces a SCSI parity error on each byte sent to the SCSI bus from the SYM53C810A. If parity checking is enabled, then the SYM53C810A checks data received for odd parity. This bit is used for diagnostic testing and should be cleared for normal operation. It can be used to generate parity errors to test error handling functions.
Bit 1 IARB (Immediate Arbitration)

Setting this bit causes the SCSI core to immediately begin arbitration once a Bus Free phase is detected following an expected SCSI disconnect. This bit is useful for multi-threaded applications. The ARB1-0 bits in SCNTL0 should be set for full arbitration and selection before setting this bit.

Arbitration will be re-tried until won. At that point, the SYM 53C810A will hold BSY and SEL asserted, and wait for a select or reselect sequence to be requested. The Immediate Arbitration bit will be reset automatically when the selection or reselection sequence is completed, or times out. Interrupts will not occur until after this bit is reset.

An unexpected disconnect condition will clear IARB without attempting arbitration. See the SCSI Disconnect Unexpected bit (SCNTL2, bit 7) for more information on expected versus unexpected disconnects.

An immediate arbitration sequence can be aborted. First, the Abort bit in the ISTAT register should be set. Then one of two things will eventually happen:

1. The Won Arbitration bit (SSTAT0 bit 2) will be set. In this case, the Immediate Arbitration bit needs to be reset. This will complete the abort sequence and disconnect the SYM 53C810A from the SCSI bus. If it is not acceptable to go to Bus Free phase immediately following the arbitration phase, a low level selection may be performed instead.

2. The abort will complete because the SYM 53C810A loses arbitration. This can be detected by the Immediate Arbitration bit being cleared. The Lost Arbitration bit (SSTAT0 bit 3) should not be used to detect this condition. No further action needs to be taken in this case.

Bit 0 SST (Start SCSI Transfer)

This bit is automatically set during SCRIPTS execution, and should not be used. It causes the SCSI core to begin a SCSI transfer, including SREQ/SACK handshaking. The determination of whether the transfer is a send or receive is made according to the value written to the I/O register in SOCL. This bit is self-resetting. It should not be set for low level operation.

CAUTION:

Writing to this register while not connected may cause the loss of a selection/reselection by resetting the Connected bit.
Register 02 (82)
SCSI Control Two (SCNTL2)
Read/Write

Bit 7 SDU (SCSI Disconnect Unexpected)
This bit is valid in initiator mode only. When this bit is set, the SCSI core is not expecting the SCSI bus to enter the Bus Free phase. If it does, an unexpected disconnect error will be generated (see the Unexpected Disconnect bit in the SIST0 register, bit 2). During normal SCRIPTS mode operation, this bit is set automatically whenever the SCSI core is reselected, or successfully selects another SCSI device.
The SDU bit should be reset with a register write (MOVE 0x7f & SCNTL2 TO SCNTL2) before the SCSI core expects a disconnect to occur, normally prior to sending an Abort, Abort Tag, Bus Device Reset, Clear Queue or Release Recovery message, or before deasserting SACK/ after receiving a Disconnect command or Command Complete message.

Bits 6-0 Reserved

Register 03 (83)
SCSI Control Three (SCNTL3)
Read/Write

Bit 7 Reserved

Bits 6-4 SCF2-0 (Synchronous Clock Conversion Factor)
These bits select the factor by which the frequency of SCLK is divided before being presented to the synchronous SCSI control logic. The bits are encoded as per Table 5-2, "Synchronous Clock Conversion Factor," on page 5-10. For synchronous receive, the output of this divider is always divided by 4 and that value determines the transfer rate. For example, if SCLK is 40 MHz and the SCF value is set to divide by one, then the maximum synchronous receive rate is 10 Mb/s \((40/1)/4 = 10\) .
For synchronous send, the output of this divider gets divided by the transfer period (XFERP) bits in the SCSI Transfer (SXFER) register, and that value determines the transfer
rate. For valid combinations of the SCF and XFERP, see Table 5-4 and Table 5-5.

Table 5-2: Synchronous Clock Conversion Factor

<table>
<thead>
<tr>
<th>SCF2</th>
<th>SCF1</th>
<th>SCF0</th>
<th>Factor Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>SCLK/3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>SCLK/1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>SCLK/1.5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>SCLK/2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>SCLK/3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Table 5-3: Asynchronous Clock Conversion Factor

<table>
<thead>
<tr>
<th>CCF2</th>
<th>CCF1</th>
<th>CCF0</th>
<th>SCSI Clock (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50.01-66.00</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>16.67-25.00</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>25.01-37.50</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>37.51-50.00</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>50.01-66.00</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Note: for additional information on how the synchronous transfer rate is determined, see “Synchronous Operation” on page 2-11.

Bit 3 Reserved

Bits 2-0 CCF2-0 (Clock Conversion Factor)

These bits select the frequency of the SCLK for asynchronous SCSI operations. The bits are encoded as per the following table. All other combinations are reserved and should never be used.
Register 04 (84)
SCSI Chip ID (SCID)
Read/Write

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Reserved</td>
</tr>
<tr>
<td>6</td>
<td>RRE (Enable Response to Reselection)</td>
</tr>
<tr>
<td>5</td>
<td>SRE (Enable Response to Selection)</td>
</tr>
<tr>
<td>4-3</td>
<td>Reserved</td>
</tr>
<tr>
<td>2-0</td>
<td>Encoded SYM53C810A Chip SCSI ID, bits 2-0</td>
</tr>
</tbody>
</table>

Bit 6 RRE (Enable Response to Reselection)
When this bit is set, the SYM53C810A is enabled to respond to bus-initiated reselection at the chip ID in the RESPID register. Note that the SYM53C810A will not automatically reconfigure itself to initiator mode as a result of being reselected.

Bit 5 SRE (Enable Response to Selection)
When this bit is set, the SYM53C810A is able to respond to bus-initiated selection at the chip ID in the RESPID register. Note that the SYM53C810A will not automatically reconfigure itself to target mode as a result of being selected.

Register 05 (85)
SCSI Transfer (SXFER)
Read/Write

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-5</td>
<td>TP2-0 (SCSI Synchronous Transfer Period)</td>
</tr>
</tbody>
</table>

Bits 7-5 TP2-0 (SCSI Synchronous Transfer Period)
These bits determine the SCSI synchronous transfer period (XFERP) used by the SYM53C810A when sending synchronous SCSI data in either initiator or target mode. These bits control the programmable dividers in the chip.

Note: when using Table Indirect I/O commands, bits 7-0 of this register will be loaded from the I/O data structure.

Note: for additional information on how the synchronous transfer rate is determined, refer to Chapter 2, “Functional Description.”

Use the following formula to calculate the synchronous send and receive rates. Table 5-4 and Table 5-5 show examples of possible bit combinations.
Operating Registers

Synchronous Send Rate = \((SCLK/SCF)/XFERP\)
Synchronous Receive Rate = \((SCLK/SCF) / 4\)

Key:
SCLK = SCLK
SCF = Synchronous Clock Conversion Factor, SCNTL3 bits 6-4
XFERP = Transfer period, SXFER register bits 7-5

Table 5-4: Examples of Synchronous Transfer Periods and Rates for SCSI-1

<table>
<thead>
<tr>
<th>SCLK (MHz)</th>
<th>SCF (SCNTL3 bits 6-4)</th>
<th>XFERP (SXFER bits 7-5)</th>
<th>Sync Send Rate (MB/s)</th>
<th>Sync Send Period (ns)</th>
<th>Sync Receive Rate (MB/s)</th>
<th>Sync Receive Period (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>66.67</td>
<td>÷ 3</td>
<td>4</td>
<td>5.55</td>
<td>180</td>
<td>5.55</td>
<td>180</td>
</tr>
<tr>
<td>66.67</td>
<td>÷ 3</td>
<td>4</td>
<td>4.44</td>
<td>225</td>
<td>5.55</td>
<td>180</td>
</tr>
<tr>
<td>50</td>
<td>÷ 2</td>
<td>4</td>
<td>6.25</td>
<td>160</td>
<td>6.25</td>
<td>160</td>
</tr>
<tr>
<td>50</td>
<td>÷ 2</td>
<td>5</td>
<td>5</td>
<td>200</td>
<td>6.25</td>
<td>160</td>
</tr>
<tr>
<td>40</td>
<td>÷ 2</td>
<td>4</td>
<td>5</td>
<td>200</td>
<td>5</td>
<td>200</td>
</tr>
<tr>
<td>37.50</td>
<td>÷ 1.5</td>
<td>4</td>
<td>6.25</td>
<td>160</td>
<td>6.25</td>
<td>160</td>
</tr>
<tr>
<td>33.33</td>
<td>÷ 1.5</td>
<td>4</td>
<td>5.55</td>
<td>180</td>
<td>5.55</td>
<td>180</td>
</tr>
<tr>
<td>25</td>
<td>÷ 1</td>
<td>4</td>
<td>6.25</td>
<td>160</td>
<td>6.25</td>
<td>160</td>
</tr>
<tr>
<td>20</td>
<td>÷ 1</td>
<td>4</td>
<td>5</td>
<td>200</td>
<td>5</td>
<td>200</td>
</tr>
<tr>
<td>16.67</td>
<td>÷ 1</td>
<td>4</td>
<td>4.17</td>
<td>240</td>
<td>4.17</td>
<td>240</td>
</tr>
</tbody>
</table>

Table 5-5: Examples of Synchronous Transfer Periods and Rates for Fast SCSI

<table>
<thead>
<tr>
<th>SCLK (MHz)</th>
<th>SCF (SCNTL3 bits 6-4)</th>
<th>XFERP (SXFER bits 7-5)</th>
<th>Sync Send Rate (MB/s)</th>
<th>Sync Send Period (ns)</th>
<th>Sync Receive Rate (MB/s)</th>
<th>Sync Receive Period (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>66.67</td>
<td>÷ 1.5</td>
<td>4</td>
<td>11.11</td>
<td>90</td>
<td>11.11</td>
<td>90</td>
</tr>
<tr>
<td>66.67</td>
<td>÷ 1</td>
<td>5</td>
<td>8.88</td>
<td>112.5</td>
<td>11.11</td>
<td>90</td>
</tr>
<tr>
<td>50</td>
<td>÷ 1</td>
<td>4</td>
<td>12.5</td>
<td>80</td>
<td>12.5</td>
<td>80</td>
</tr>
<tr>
<td>50</td>
<td>÷ 1</td>
<td>5</td>
<td>10</td>
<td>100</td>
<td>12.5</td>
<td>80</td>
</tr>
<tr>
<td>40</td>
<td>÷ 1</td>
<td>4</td>
<td>10</td>
<td>100</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>37.50</td>
<td>÷ 1</td>
<td>4</td>
<td>9.375</td>
<td>106.67</td>
<td>9.375</td>
<td>106.67</td>
</tr>
<tr>
<td>33.33</td>
<td>÷ 1</td>
<td>4</td>
<td>8.33</td>
<td>120</td>
<td>8.33</td>
<td>120</td>
</tr>
<tr>
<td>25</td>
<td>÷ 1</td>
<td>4</td>
<td>6.25</td>
<td>160</td>
<td>6.25</td>
<td>160</td>
</tr>
<tr>
<td>20</td>
<td>÷ 1</td>
<td>4</td>
<td>5</td>
<td>200</td>
<td>5</td>
<td>200</td>
</tr>
<tr>
<td>16.67</td>
<td>÷ 1</td>
<td>4</td>
<td>4.17</td>
<td>240</td>
<td>4.17</td>
<td>240</td>
</tr>
</tbody>
</table>
Bit 4 Reserved

Bits 3-0 MO4-MO0 (Max SCSI Synchronous Offset)
These bits describe the maximum SCSI synchronous offset used by the SYM 53C810A when transferring synchronous SCSI data in either initiator or target mode. The following table describes the possible combinations and their relationship to the synchronous data offset used by the SYM 53C810A. These bits determine the SYM 53C810A's method of transfer for Data In and Data Out phases only; all other information transfers will occur asynchronously.

<table>
<thead>
<tr>
<th>MO3</th>
<th>MO2</th>
<th>MO1</th>
<th>MO0</th>
<th>Synchronous Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0-Asynchronous</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>1</td>
<td>X</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Table 5-6: SCSI Synchronous Offset Values

Register 06 (86)
SCSI Destination ID (SDID)
Read/Write

<table>
<thead>
<tr>
<th>RES</th>
<th>RES</th>
<th>RES</th>
<th>RES</th>
<th>ENC2</th>
<th>ENC1</th>
<th>ENC0</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Bits 7-3 Reserved

Bits 2-0 Encoded destination SCSI ID
Writing these bits sets the SCSI ID of the intended initiator or target during SCSI reselection or selection phases, respectively. When executing SCRIPTS, the SCRIPTS processor writes the destination SCSI ID to this register. The SCSI ID is defined by the user in a SCRIPTS SELECT or RESELECT instruction. The value written should be the binary-encoded ID value. The priority of the 8 possible IDs, in descending order, is:
Register 07 (87)
General Purpose (GPREG)
Read/Write

<table>
<thead>
<tr>
<th>Bits 7-2</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bits 1-0</th>
<th>GPIO1-GPIO0 (General Purpose)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>These bits can be programmed through the GPCNTL Register to become inputs, outputs, or, special functions. These signals can also be programmed as live inputs and sensed through a SCRIPTS Register to Register Move Instruction. GPIO(1-0) default as inputs. When configured as inputs, an internal pull-up is enabled.</td>
</tr>
<tr>
<td></td>
<td>The Symbios Logic SDMS software uses the GPIO 0 pin to toggle SCSI device LEDs, turning on the LED whenever the SYM53C810A is connected to the SCSI bus. SDMS drives this pin low to turn on the LED, or drives it high to turn off the LED.</td>
</tr>
<tr>
<td></td>
<td>The GPIO 1-0 pins are used in SDMS to access serial NVRAM. When used for accessing serial NVRAM, GPIO 1 is used as a clock with the GPIO 0 pin serving as data.</td>
</tr>
</tbody>
</table>

Register 08 (88)
SCSI First Byte Received (SFBR)
Read/Write

<table>
<thead>
<tr>
<th>Bits 1-0</th>
<th>SFBR (SCSI First Byte Received)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This register contains the first byte received in any asynchronous information transfer phase. For example, when the SYM53C810A is operating in initiator role, this register contains the first byte received in Message In, Status Phase, Reserved In and Data In.</td>
</tr>
<tr>
<td></td>
<td>When a Block Move instruction is executed for a particular phase, the first byte received is stored in this register—even if the present phase is the same as the last phase. The first byte-received value for a particular input phase is not valid until after a MOVE instruction is executed.</td>
</tr>
<tr>
<td></td>
<td>This register is also the accumulator for register read-modify-writes with the SFBR as the destination. This allows bit testing after an operation.</td>
</tr>
<tr>
<td></td>
<td>The SFBR can not be written to via the CPU, and therefore not by a Memory Move. Additionally, the Load instruction cannot be used to write to this register. However, the SFBR can be loaded via SCRIPTS Read/Write operations. To load the SFBR with a byte stored in system memory, the byte must first be moved to an intermediate SYM53C810A register (such as the SCRATCH register), and then to the SFBR.</td>
</tr>
<tr>
<td></td>
<td>This register will also contain the state of the lower eight bits of the SCSI data bus during the selection phase if the COM bit in the DCNTL register is clear.</td>
</tr>
</tbody>
</table>
Register 09 (89)
SCSI Output Control Latch (SOCL)
Read/Write

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQ</td>
<td>ACK</td>
<td>BSY</td>
<td>SEL</td>
<td>ATN</td>
<td>MSG</td>
<td>C/D</td>
<td>I/O</td>
</tr>
</tbody>
</table>

Default: 00000000

- **Bit 7**: REQ (Assert SCSI REQ/signal)
- **Bit 6**: ACK (Assert SCSI ACK/signal)
- **Bit 5**: BSY (Assert SCSI BSY/signal)
- **Bit 4**: SEL (Assert SCSI SEL/signal)
- **Bit 3**: ATN (Assert SCSI ATN/signal)
- **Bit 2**: MSG (Assert SCSI MSG/signal)
- **Bit 1**: C/D (Assert SCSI C_D/signal)
- **Bit 0**: I/O (Assert SCSI I_O/signal)

This register is used primarily for diagnostic testing or programmed I/O operation. It is controlled by the SCRIPTS processor when executing SCSI SCRIPTS. SOCL should only be used when transferring data via programmed I/O. Some bits are set (1) or reset (0) when executing SCSI SCRIPTS. Do not write to the register once the SYM53C810A starts executing normal SCSI SCRIPTS.

Register 0A (8A)
SCSI Selector ID (SSID)
Read Only

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAL</td>
<td>RES</td>
<td>RES</td>
<td>RES</td>
<td>RES</td>
<td>ENID2</td>
<td>ENID1</td>
<td>ENID0</td>
</tr>
</tbody>
</table>

Default: 0X000000

- **Bit 7**: VAL (SCSI Valid Bit)
 - If VAL is asserted, the two SCSI IDs were detected on the bus during a bus-initiated selection or reselection, and the encoded destination SCSI ID bits below are valid. If VAL is deasserted, only one ID was present and the contents of the encoded destination ID are meaningless.

- **Bits 6-3**: Reserved

- **Bits 2-0**: Encoded Destination SCSI ID
 - Reading the SSID register immediately after the SYM53C810A has been selected or reselected returns the binary-encoded SCSI ID of the device that performed the operation. These bits are invalid for targets that are selected under the single initiator option of the SCSI-1 specification. This condition can be detected by examining the VAL bit above.
Operating Registers

Register 0B (8B)
SCSI Bus Control Lines (SBC L)
Read Only

<table>
<thead>
<tr>
<th>Bit 0</th>
<th>I/O (SI_O/ status)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 1</td>
<td>C/D (SC_D/ status)</td>
</tr>
<tr>
<td>Bit 2</td>
<td>MSG (SMSG/ status)</td>
</tr>
<tr>
<td>Bit 3</td>
<td>ATN SATN/ status)</td>
</tr>
<tr>
<td>Bit 4</td>
<td>SEL (SSEL/ status)</td>
</tr>
<tr>
<td>Bit 5</td>
<td>BSY (SBSY/ status)</td>
</tr>
<tr>
<td>Bit 6</td>
<td>ACK (SACK/ status)</td>
</tr>
<tr>
<td>Bit 7</td>
<td>REQ (SREQ/ status)</td>
</tr>
</tbody>
</table>

When read, this register returns the SCSI control line status. A bit will be set when the corresponding SCSI control line is asserted. These bits are not latched; they are a true representation of what is on the SCSI bus at the time the register is read. The resulting read data is synchronized before being presented to the PCI bus to prevent parity errors from being passed to the system. This register can be used for diagnostics testing or operation in low level mode.

Register 0C (8C)
DMA Status (DSTAT)
Read Only

<table>
<thead>
<tr>
<th>Bit 0</th>
<th>IID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 1</td>
<td>RES</td>
</tr>
<tr>
<td>Bit 2</td>
<td>SIR</td>
</tr>
<tr>
<td>Bit 3</td>
<td>SSI</td>
</tr>
<tr>
<td>Bit 4</td>
<td>ABRT</td>
</tr>
<tr>
<td>Bit 5</td>
<td>BF</td>
</tr>
<tr>
<td>Bit 6</td>
<td>MDPE</td>
</tr>
<tr>
<td>Bit 7</td>
<td>DFE</td>
</tr>
</tbody>
</table>

Reading this register will clear any bits that are set at the time the register is read, but will not necessarily clear the register because additional interrupts may be pending (the SYM53C810A stacks interrupts). The DIP bit in the ISTAT register will also be cleared. DMA interrupt conditions may be individually masked through the DIEN register.

When performing consecutive 8-bit reads of the DSTAT, SIST0 and SIST1 registers (in any order), insert a delay equivalent to 12 CLK periods between the reads to ensure that the interrupts clear properly. See Chapter 2, “Functional Description,” for more information on interrupts.

Bit 7 DFE (DMA FIFO empty)
This status bit is set when the DMA FIFO is empty. It may be used to determine if any data resides in the FIFO when an error occurs and an interrupt is generated. This bit is a pure status bit and will not cause an interrupt.

Bit 6 MDPE (Master Data Parity Error)
This bit is set when the SYM 53C810A as a master detects a data parity error, or a target device signals a parity error during a data phase. This bit is completely disabled by the Master Parity Error Enable bit (bit 3 of CTEST 4).

Bit 5 BF (Bus fault)
This bit is set when a PCI bus fault condition is detected. A PCI bus fault can only occur when the SYM 53C810A is bus master. A PCI bus fault occurs when a cycle ends with a Bad Address or Target Abort Condition.
Bit 4 ABRT (Aborted)
This bit is set when an abort condition occurs. An abort condition occurs when a software abort command is issued by setting bit 7 of the ISTAT register.

Bit 3 SSI (Single step interrupt)
If the Single-Step Mode bit in the DCNTL register is set, this bit will be set and an interrupt generated after successful execution of each SCRIPTS instruction.

Bit 2 SIR (SCRIPTS interrupt instruction received)
This status bit is set whenever an Interrupt instruction is evaluated as true.

Bit 1 Reserved

Bit 0 IID (Illegal instruction detected)
This status bit is set any time an illegal instruction is detected, whether the SYM53C810A is operating in single-step mode or automatically executing SCSI SCRIPTS. This bit will also be set if one of the following conditions occurs:

1. If the SYM53C810A is executing a Wait Disconnect instruction and the SCSI REQ line is asserted without a disconnect occurring.
2. If a Move, Chained Move, or Memory Move command with a byte count of zero is fetched.
3. If a Load/Store memory address maps back into chip register space.

Register 0D (8D)
SCSI Status Zero (SSTAT 0)
Read Only

```
<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>ILF</td>
</tr>
<tr>
<td>6</td>
<td>ORF</td>
</tr>
<tr>
<td>5</td>
<td>OLF</td>
</tr>
<tr>
<td>4</td>
<td>AIP</td>
</tr>
<tr>
<td>3</td>
<td>LOA</td>
</tr>
<tr>
<td>2</td>
<td>WOA</td>
</tr>
<tr>
<td>1</td>
<td>RST</td>
</tr>
<tr>
<td>0</td>
<td>SDP</td>
</tr>
</tbody>
</table>
```

Default: 00000000

Bit 7 ILF (SIDL full)
This bit is set when the SCSI Input Data Latch register (SIDL) contains data. Data is transferred from the SCSI bus to the SIDL register before being sent to the DMA FIFO and then to the host bus. The SIDL register contains SCSI data received asynchronously. Synchronous data received does not flow through this register.

Bit 6 ORF (SODR full)
This bit is set when the SCSI Output Data Register (SODR, a hidden buffer register which is not accessible) contains data. The SODR register is used by the SCSI logic as a second storage register when sending data synchronously. It cannot be read or written by the user. This bit can be used to determine how many bytes reside in the chip when an error occurs.

Bit 5 OLF (SODL full)
This bit is set when SCSI Output Data Latch (SODL) contains data. The SODL register is the interface between the DMA logic and the SCSI bus. In synchronous mode, data is transferred from the host bus to the SODL register, and then to the SIDL output data register (SODR, a hidden buffer register which is not accessible) before being sent to the SCSI bus. In asynchronous mode, data is transferred from the host bus to the SODL register, and then to the SIDL register. The SODR buffer register is not used for asynchronous transfers. This bit can be used to determine how many bytes reside in the chip when an error occurs.
Operating Registers

Bit 4 AIP (Arbitration in progress)
Arbitration in Progress (AIP = 1) indicates that
the SYM53C810A has detected a Bus Free
condition, asserted BSY, and asserted its SCSI
ID onto the SCSI bus.

Bit 3 LOA (Lost arbitration)
When set, LOA indicates that the
SYM53C810A has detected a bus free condi-
tion, arbitrated for the SCSI bus, and lost arbi-
tration due to another SCSI device asserting
the SEL/ signal.

Bit 2 WOA (Won arbitration)
When set, WOA indicates that the
SYM53C810A has detected a Bus Free condi-
tion, arbitrated for the SCSI bus and won arbi-
tration. The arbitration mode selected in the
SCNTL0 register must be full arbitration and
selection for this bit to be set.

Bit 1 RST/ (SCSI RST/ signal)
This bit reports the current status of the SCSI
RST/ signal, and the SRST bit (bit 6) in the
ISTAT register.

Bit 0 SDP/ (SCSI SDP/ parity signal)
This bit represents the active high current sta-
tus of the SCSI SDP/ parity signal.

Register 0E (8E)
SCSI Status One (SSTAT 1)
Read Only

<table>
<thead>
<tr>
<th>FF3</th>
<th>FF2</th>
<th>FF1</th>
<th>FF0</th>
<th>Bytes in the SCSI FIFO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

These four bits define the number of bytes that
currently reside in the SYM53C810A’s SCSI
synchronous data FIFO. These bits are not
latched and they will change as data moves
through the FIFO. Because the FIFO can only
hold nine bytes, values over nine will not occur.

Bits 7-4 FF3-FF0 (FIFO flags)

Bit 3 SDPL (Latched SCSI parity)
This bit reflects the SCSI parity signal
(SDP/), corresponding to the data latched in
the SCSI Input Data Latch register (SIDL). It
changes when a new byte is latched into the
SIDL register. This bit is active high, in other
words, it is set when the parity signal is active.
Bit 2 MSG (SCSI MSG/signal)

Bit 1 C/D (SCSI C_D/signal)

Bit 0 I/O (SCSI I_O/signal)

These SCSI phase status bits are latched on the asserting edge of SREQ/ when operating in either initiator or target mode. These bits are set when the corresponding signal is active. They are useful when operating in low level mode.

Register 0F (8F)
SCSI Status Two (SSTAT 2)
(Read Only)

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES</td>
<td>RES</td>
<td>RES</td>
<td>RES</td>
<td>RES</td>
<td>LDSC</td>
<td>RES</td>
<td>RES</td>
</tr>
</tbody>
</table>

Default: >>>

Bits 7-2 Reserved

Bit 1 LDSC (Last Disconnect)

This bit is used in conjunction with the Connected (CON) bit in SCNTL1. It allows the user to detect the case in which a target device disconnects, and then some SCSI device selects or reselects the SYM 53C 810A. If the Connected bit is asserted and the LDSC bit is asserted, a disconnect has occurred. This bit is set when the Connected bit in SCNTL1 is clear. This bit is cleared when a Block Move instruction executes while the Connected bit in SCNTL1 is on.

Bit 0 Reserved
Operating Registers

Registers 10-13 (90-93)
Data Structure Address (DSA)
Read/Write

This 32-bit register contains the base address used for all table indirect calculations. The DSA register is usually loaded prior to starting an I/O, but it is possible for a SCRIPTS Memory Move to load the DSA during the I/O.

During any Memory Memory Move operation, the contents of this register are preserved. The power-up value of this register is indeterminate.

Register 14 (94)
Interrupt Status (ISTAT)
(Read/Write)

<table>
<thead>
<tr>
<th>ABRT</th>
<th>SPST</th>
<th>SIGP</th>
<th>SEM</th>
<th>CCN</th>
<th>INTF</th>
<th>SIP</th>
<th>DIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

This is the only register that can be accessed by the host CPU while the SYM53C810A is executing SCRIPTS (without interfering in the operation of the SYM53C810A). It may be used to poll for interrupts if hardware interrupts are disabled. There may be stacked interrupts pending; read this register after servicing an interrupt to check for stacked interrupts. For more information on interrupt handling refer to Chapter 2, "Functional Description."

Bit 7 ABRT (Abort operation)

Setting this bit aborts the current operation being executed by the SYM53C810A. If this bit is set and an interrupt is received, reset this bit before reading the DSTAT register to prevent further aborted interrupts from being generated. The sequence to abort any operation is:

1. Set this bit.
2. Wait for an interrupt.
3. Read the ISTAT register.
4. If the SCSI Interrupt Pending bit is set, then read the SIST0 or SIST1 register to determine the cause of the SCSI Interrupt and go back to Step 2.
5. If the SCSI Interrupt Pending bit is clear, and the DMA Interrupt Pending bit is set, then write 00h value to this register.
6. Read the DSTAT register to verify the aborted interrupt and to see if any other interrupting conditions have occurred.

Bit 6 SRST (Software reset)

Setting this bit resets the SYM53C810A. All operating registers are cleared to their default values and all SCSI signals are deasserted. Set-
ting this bit does not cause the SCSI RST / signal to be asserted. This reset will not clear the 53C700 compatibility bit or any of the PCI configuration registers. This bit is not self-clearing; it must be cleared to clear the reset condition (a hardware reset will also clear this bit).

Bit 5 SIGP (Signal process)

SIGP is a R/W bit that can be written at any time, and polled and reset via CTEST2. The SIGP bit can be used in various ways to pass a flag to or from a running SCRIPTS instruction.

The only SCRIPTS instruction directly affected by the SIGP bit is Wait For Selection/Reselection. Setting this bit causes that instruction to jump to the alternate address immediately. The instructions at the alternate jump address should check the status of SIGP to determine the cause of the jump. The SIGP bit may be used at any time and is not restricted to the wait for selection/reselection condition.

Bit 4 SEM (Semaphore)

This bit can be set by the SCRIPTS processor using a SCRIPTS register write instruction. The bit may also be set by an external processor while the SYM 53C810A is executing a SCRIPTS operation. This bit enables the SYM 53C810A to notify an external processor of a predefined condition while SCRIPTS are running. The external processor may also notify the SYM 53C810A of a predefined condition and the SCRIPTS processor may take action while SCRIPTS are executing.

Note: if the INTF bit is set but SIP or DIP is not set, do not attempt to read the other chip status registers. An interrupt-on-the-fly interrupt must be cleared before servicing any other interrupts indicated by SIP or DIP.

Bit 3 CON (Connected)

This bit is automatically set any time the SYM 53C810A is connected to the SCSI bus as an initiator or as a target. It will be set after successfully completing selection or when the SYM 53C810A has responded to a bus-initiated selection or reselection. It will also be set after the SYM 53C810A wins arbitration when operating in low level mode. When this bit is clear, the SYM 53C810A is not connected to the SCSI bus.

Bit 2 INTF (Interrupt on the Fly)

This bit is asserted by an INTFLY instruction during SCRIPTS execution. SCRIPTS programs will not halt when the interrupt occurs. This bit can be used to notify a service routine, running on the main processor while the SCRIPTS processor is still executing a SCRIPTS program. If this bit is set, when the ISTAT register is read it will not automatically be cleared. To clear this bit, it must be written to a one. The reset operation is self-clearing.

Note: if the INTF bit is set but SIP or DIP is not set, do not attempt to read the other chip status registers. An interrupt-on-the-fly interrupt must be cleared before servicing any other interrupts indicated by SIP or DIP.

Note: this bit must be written to one in order to clear it after it has been set.
Bit 1 SIP (SCSI interrupt pending)
This status bit is set when an interrupt condition is detected in the SCSI portion of the SYM 53C810A. The following conditions will cause a SCSI interrupt.

- A phase mismatch occurs (initiator mode) or SAT N/ becomes active (target mode)
- An arbitration sequence completes
- A selection or reselection time-out occurs
- The SYM 53C810A was selected
- The SYM 53C810A was reselected
- A SCSI gross error occurs
- An unexpected disconnect occurs
- A SCSI reset occurs
- A parity error is detected
- The handshake-to-handshake timer is expired
- The general purpose timer is expired

To determine exactly which condition(s) caused the interrupt, read the SIST0 and SIST1 registers.

Bit 0 DIP (DMA interrupt pending)
This status bit is set when an interrupt condition is detected in the DMA portion of the SYM 53C810A. The following conditions will cause a DMA interrupt.

- A PCI parity error is detected
- A bus fault is detected
- An abort condition is detected
- A SCRIPTS instruction is executed in single-step mode
- A SCRIPTS interrupt instruction is executed
- An illegal instruction is detected

To determine exactly which condition(s) caused the interrupt, read the DSTAT register.

Register 18 (98)
Chip Test Zero (CTEST 0)
Read/Write
This was a general purpose read/write register in previous SYM 53C8XX family chips. Although it is still a read/write register, Symbios reserves the right to use these bits for future 53C8XX family enhancements.
Register 19 (99)
Chip Test One (CTEST 1)
Read Only

<table>
<thead>
<tr>
<th>Bits 7-4</th>
<th>FMT3-0 (Byte empty in DMA FIFO)</th>
</tr>
</thead>
</table>
| | These bits identify the bottom bytes in the DMA FIFO that are empty. Each bit corresponds to a byte lane in the DMA FIFO. For example, if byte lane three is empty, then FMT3 will be set. Since the FMT flags indicate the status of bytes at the bottom of the FIFO, if all FMT bits are set, the DMA FIFO is empty.

<table>
<thead>
<tr>
<th>Bits 3-0</th>
<th>FFL3-0 (Byte full in DMA FIFO)</th>
</tr>
</thead>
</table>
| | These status bits identify the top bytes in the DMA FIFO that are full. Each bit corresponds to a byte lane in the DMA FIFO. For example, if byte lane three is full then FFL3 will be set. Since the FFL flags indicate the status of bytes at the top of the FIFO, if all FFL bits are set, the DMA FIFO is full.

Register 1A (9A)
Chip Test Two (CTEST 2)
Read Only

<table>
<thead>
<tr>
<th>Bits 7</th>
<th>DDIR (Data transfer direction)</th>
</tr>
</thead>
</table>
| | This status bit indicates which direction data is being transferred. When this bit is set, the data will be transferred from the SCSI bus to the host bus. When this bit is clear, the data will be transferred from the host bus to the SCSI bus.

<table>
<thead>
<tr>
<th>Bit 6</th>
<th>SIGP (Signal process)</th>
</tr>
</thead>
</table>
| | This bit is a copy of the SIGP bit in the ISTAT register (bit 5). The SIGP bit is used to signal a running SCRIPTS instruction. When this register is read, the SIGP bit in the ISTAT register is cleared.

<table>
<thead>
<tr>
<th>Bit 5</th>
<th>CIO (Configured as I/O)</th>
</tr>
</thead>
</table>
| | This bit is defined as the Configuration I/O Enable Status bit. This read-only bit indicates if the chip is currently enabled as I/O space.

Note: both bits 4 and 5 may be set if the chip is dual-mapped.

<table>
<thead>
<tr>
<th>Bit 4</th>
<th>CM (Configured as memory)</th>
</tr>
</thead>
</table>
| | This bit is defined as the configuration memory enable status bit. This read-only bit indicates if the chip is currently enabled as memory space.

Note: both bits 4 and 5 may be set if the chip is dual-mapped.

<table>
<thead>
<tr>
<th>Bit 3</th>
<th>Reserved</th>
</tr>
</thead>
</table>
Bit 2 **TEOP (SCSI true end of process)**
This bit indicates the status of the SYM 53C810A's internal TEOP signal. The TEOP signal acknowledges the completion of a transfer through the SCSI portion of the SYM 53C810A. When this bit is set, TEOP is active. When this bit is clear, TEOP is inactive.

Bit 1 **DREQ (Data request status)**
This bit indicates the status of the SYM 53C810A’s internal Data Request signal (DREQ). When this bit is set, DREQ is active. When this bit is clear, DREQ is inactive.

Bit 0 **DACK (Data acknowledge status)**
This bit indicates the status of the SYM 53C810A’s internal Data Acknowledge signal (DACK/). When this bit is set, DACK/ is inactive. When this bit is clear, DACK/ is active.

Register 1B (9B)
Chip Test Three (CTEST3)
Read/Write

<table>
<thead>
<tr>
<th>V3</th>
<th>V2</th>
<th>V1</th>
<th>V0</th>
<th>FLF</th>
<th>CLF</th>
<th>FM</th>
<th>WRIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Default>>>
XXX0000

Bits 7-4 V3-V0 (Chip revision level)
These bits identify the chip revision level for software purposes.

Bit 3 **FLF (Flush DMA FIFO)**
When this bit is set, data residing in the DMA FIFO is transferred to memory, starting at the address in the DNAD register. The internal DMAWR signal, controlled by the CTEST5 register, determines the direction of the transfer. This bit is not self clearing; once the SYM 53C810A has successfully transferred the data, this bit should be reset.

Note: polling of FIFO flags is allowed during flush operations.

Bit 2 **CLF (Clear DMA FIFO)**
When this bit is set, all data pointers for the DMA FIFO are cleared. Any data in the FIFO is lost. This bit automatically resets after the SYM 53C810A has successfully cleared the appropriate FIFO pointers and registers.

Note: this bit does not clear the data visible at the bottom of the FIFO.

Bit 1 **FM (Fetch pin mode)**
When set, this bit causes the FETCH/ pin to deassert during indirect and table indirect read operations. FETCH/ will only be active during the op code portion of an instruction fetch. This allows SCRIPTS to be stored in a PROM while data tables are stored in RAM.

If this bit is not set, FETCH/ will be asserted for all bus cycles during instruction fetches.
Bit 0 **WRIE (Write and Invalidate Enable)**

This bit, when set, causes Memory Write and Invalidate commands to be issued on the PCI bus after certain conditions have been met. These conditions are described in more detail in Chapter 3.

Registers 1C-1F (9C-9F)

Temporary (TEMP)

Read/Write

This 32-bit register stores the Return instruction address pointer from the Call instruction. The address pointer stored in this register is loaded into the DSP register when a Return instruction is executed. This address points to the next instruction to be executed. Do not write to this register while the SYM53C810A is executing SCRIPTS.

During any Memory-to-Memory Move operation, the contents of this register are preserved. The power-up value of this register is indeterminate.
Register 20 (A0)
DMA FIFO (DFIFO)
Read/Write

Bit 7 Reserved

Bits 6-0 BO6-BO0 (Byte offset counter)
These bits indicate the amount of data transferred between the SCSI core and the DMA core. It may be used to determine the number of bytes in the DMA FIFO when an interrupt occurs. These bits are unstable while data is being transferred between the two cores; once the chip has stopped transferring data, these bits are stable.

Since the DFIFO register counts the number of bytes transferred between the DMA core and the SCSI core, and the DBC register counts the number of bytes transferred across the host bus, the difference between these two counters represents the number of bytes remaining in the DMA FIFO.

The following steps will determine how many bytes are left in the DMA FIFO when an error occurs, regardless of the direction of the transfer:

1. Subtract the seven least significant bits of the DBC register from the 7-bit value of the DFIFO register.
2. AND the result with 7Fh for a byte count between zero and 64.

Note: to calculate the total number of bytes in both the DMA FIFO and SCSI logic, see the section on Data Paths in Chapter Two, “Functional Description.”

Register 21 (A1)
Chip Test Four (CTEST 4)
Read/Write

Bit 7 BDIS (Burst Disable)
When set, this bit will cause the SYM 53C810A to perform back to back cycles for all transfers. When reset, the SYM 53C810A performs back to back transfers for op code fetches and burst transfers for data moves. The handling of op code fetches is dependent on the setting of the Burst Op Code Fetch bit in the DMODE register.

Bit 6 ZMOD (High impedance mode)
Setting this bit causes the SYM 53C810A to place all output and bidirectional pins into a high-impedance state. In order to read data out of the SYM 53C810A, this bit must be cleared. This bit is intended for board-level testing only. Do not set this bit during normal system operation.

Bit 5 ZSD (SCSI Data High Impedance)
Setting this bit causes the SYM 53C810A to place the SCSI data bus SD (7-0) and the parity line (SDP) in a high-impedance state. In order to transfer data on the SCSI bus, this bit must be cleared.

Bit 4 SRTM (Shadow Register Test Mode)
Setting this bit allows access to the shadow registers used by Memory-to-Memory Move operations. When this bit is set, register accesses to the TEM P and DSA registers are directed to the shadow copies STEMP (Shadow TEM P) and SD SA (Shadow DSA). The registers are shadowed to prevent them from being overwritten during a Memory-to-Memory move operation. The DSA and TEM P registers contain the base address used
for table indirect calculations, and the address pointer for a call or return instruction, respectively. This bit is intended for manufacturing diagnostics only and should not be set during normal operations.

Bit 3 MPEE (Master Parity Error Enable)

Setting this bit enables parity checking during master data phases. A parity error during a bus master read is detected by the SYM 53C810A. A parity error during a bus master write is detected by the target, and the SYM 53C810A is informed of the error by the PERR/ pin being asserted by the target. When this bit is reset, the SYM 53C810A will not interrupt if a master parity error occurs. This bit is reset at power up.

Bits 2-0 FBL2-FBL0 (FIFO byte control)

<table>
<thead>
<tr>
<th>FBL2</th>
<th>FBL1</th>
<th>FBL0</th>
<th>DMA FIFO Byte lane</th>
<th>Pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>Disabled</td>
<td>n/a</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>D(7-0)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>D(15-8)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>D(23-16)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>D(31-24)</td>
</tr>
</tbody>
</table>

These bits steer the contents of the CTEST6 register to the appropriate byte lane of the 32-bit DMA FIFO. If the FBL2 bit is set, then FBL1 and FBL0 determine which of four byte lanes can be read or written. When cleared, the byte lane read or written is determined by the current contents of the DNAD and DBC registers. Each of the four bytes that make up the 32-bit DMA FIFO can be accessed by writing these bits to the proper value. For normal operation, FBL2 must equal zero.

Register 22 (A2)

Chip Test Five (CTEST 5)

Read/Write

<table>
<thead>
<tr>
<th>ADCK</th>
<th>BCK</th>
<th>RES</th>
<th>MASR</th>
<th>DDIR</th>
<th>RES</th>
<th>RES</th>
<th>RES</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Default>>>

0 0 X 0 0 X X X

Bit 7 ADCK (Clock address incrementor)

Setting this bit increments the address pointer contained in the DNAD register. The DNAD register is incremented based on the DNAD contents and the current DBC value. This bit automatically clears itself after incrementing the DNAD register.

Bit 6 BBCK (Clock byte counter)

Setting this bit decrements the byte count contained in the 24-bit DBC register. It is decremented based on the DBC contents and the current DNAD value. This bit automatically clears itself after decrementing the DBC register.

Bit 5 Reserved

Bit 4 MASR (Master control for set or reset pulses)

This bit controls the operation of bit 3. When this bit is set, bit 3 asserts the corresponding signal. When this bit is reset, bit 3 deasserts the corresponding signal. This bit and bit 3 should not be changed in the same write cycle.

Bit 3 DDIR (DMA direction)

Setting this bit either asserts or deasserts the internal DMA Write (DMAWR) direction signal depending on the current status of the MASR bit in this register. Asserting the DMAWR signal indicates that data will be transferred from the SCSI bus to the host bus. Deasserting the DMAWR signal transfers data from the host bus to the SCSI bus.

Bits 2-0 Reserved
Register 23 (A3)
Chip Test Six (CTEST 6)
Read/Write

Bits 7-0 DF7-DF0 (DMA FIFO)
Writing to this register writes data to the appropriate byte lane of the DMA FIFO as determined by the FBL bits in the CTEST4 register. Reading this register unloads data from the appropriate byte lane of the DMA FIFO as determined by the FBL bits in the CTEST4 register. Data written to the FIFO is loaded into the top of the FIFO. Data read out of the FIFO is taken from the bottom. To prevent DMA data from being corrupted, this register should not be accessed before starting or restarting SCRIPTS operation. This register should only be written when testing the DMA FIFO using the CTEST4 register. Writes to this register while the test mode is not enabled will have unexpected results.

<table>
<thead>
<tr>
<th>DF7</th>
<th>DF6</th>
<th>DF5</th>
<th>DF4</th>
<th>DF3</th>
<th>DF2</th>
<th>DF1</th>
<th>DF0</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Default>>> 00000000

Registers 24-26 (A4-A6)
DMA Byte Counter (DBC)
Read/Write

This 24-bit register determines the number of bytes to be transferred in a Block Move instruction. While sending data to the SCSI bus, the counter is decremented as data is moved into the DMA FIFO from memory. While receiving data from the SCSI bus, the counter is decremented as data is written to memory from the SYM53C810A. The DBC counter is decremented each time that data is transferred on the PCI bus. It is decremented by an amount equal to the number of bytes that were transferred.

The maximum number of bytes that can be transferred in any one Block Move command is 16,777,215 bytes. The maximum value that can be loaded into the DBC register is FFFFFFFh. If the instruction is a Block Move and a value of 000000h is loaded into the DBC register, an illegal instruction interrupt will occur if the SYM53C810A is not in target role, Command phase.

The DBC register is also used to hold the least significant 24 bits of the first dword of a SCRIPTS fetch, and to hold the offset value during table indirect I/O SCRIPTS. For a complete description, see Chapter Six, "Instruction Set of the I/O Processor." The power-up value of this register is indeterminate.
Register 27 (A7)
DMA Command (DCMD)
Read/Write
This 8-bit register determines the instruction for the SYM53C810A to execute. This register has a different format for each instruction. For a complete description, see Chapter Six, "Instruction Set of the I/O Processor."

Registers 28-2B (A8-AB)
DMA Next Address (DNAD)
Read/Write
This 32-bit register contains the general purpose address pointer. At the start of some SCRIPTS operations, its value is copied from the DSPS register. Its value may not be valid except in certain abort conditions. The default value of this register is zero.
Registers 2C-2F (AC-AF)
DMA SCRIPTS Pointer (DSP)
Read/Write

The CPU writes the address of the first SCRIPTS instruction to this register to begin SCSI SCRIPTS operation. In normal SCRIPTS operation, once the starting address of the first SCRIPTS instruction is written to this register, SCRIPTS instructions are automatically fetched and executed until an interrupt condition occurs.

In single-step mode, there is a single step interrupt after each instruction is executed. The DSP register does not need to be written with the next address, but the Start DMA bit (bit 2, DCNTL register) must be set each time the step interrupt occurs to fetch and execute the next SCRIPTS command. When writing this register eight bits at a time, writing the upper eight bits begins execution of the SCSI SCRIPTS. The default value of this register is zero.

Registers 30-33 (B0-B3)
DMA SCRIPTS Pointer Save (DSPS)
Read/Write

This register contains the second dword of a SCRIPTS instruction. It is overwritten each time a SCRIPTS instruction is fetched. When a SCRIPTS interrupt instruction is executed, this register holds the interrupt vector. The power-up value of this register is indeterminate.
Operating Registers

Registers 34-37 (B4-B7)
Scratch Register A (SCRATCH A)
Read/Write

This is a general purpose, user-definable scratch pad register. Apart from CPU access, only Register Read/Write and Memory Moves into the SCRATCH register will alter its contents. The power-up value of this register is indeterminate. The SYM 53C810A cannot fetch SCRIPTS instructions from this location.

Register 38 (B8)
DMA Mode (DMODE)
Read/Write

<table>
<thead>
<tr>
<th>BL1</th>
<th>BL0</th>
<th>SIOM</th>
<th>DIOM</th>
<th>ERL</th>
<th>ERMP</th>
<th>BOF</th>
<th>MAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Default</td>
<td>0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bit 7-6 BL1-BL0 (Burst length)

<table>
<thead>
<tr>
<th>BL1</th>
<th>BL0</th>
<th>Burst Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2-transfer burst</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>4-transfer burst</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>8-transfer burst</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>16-transfer burst</td>
</tr>
</tbody>
</table>

These bits control the maximum number of transfers performed per bus ownership, regardless of whether the transfers are back-to-back, burst, or a combination of both. The SYM 53C810A asserts the Bus Request (REQ/) output when the DMA FIFO can accommodate a transfer of at least one burst size of data. Bus Request (REQ/) is also asserted during start-of-transfer and end-of-transfer cleanup and alignment, even though less than a full burst of transfers may be performed. The SYM 53C810A inserts a “fairness delay” of four CLKs between burst-length transfers (as set in BL1-0) during normal operation. The fairness delay is not inserted during PCI retry cycles. This gives the CPU and other bus master devices the opportunity to access the PCI bus between bursts.

Bit 5 SIOM (Source I/O-Memory Enable)

This bit is defined as an I/O Memory Enable bit for the source address of a Memory Move or Block Move Command. If this bit is set, then the source address is in I/O space; and if reset, then the source address is in memory space.
Operating Registers

This function is useful for register-to-memory operations using the Memory Move instruction when the SYM53C810A is I/O mapped. Bits 4 and 5 of the CTEST2 register can be used to determine the configuration status of the SYM53C810A.

Bit 4 DIOM (Destination I/O-Memory Enable)
This bit is defined as an I/O Memory Enable bit for the destination address of a Memory Move Command. If this bit is set, then the destination address is in I/O space; and if reset, then the destination address is in memory space.

This function is useful for memory-to-register operations using the Memory Move instruction when the SYM53C810A is I/O mapped. Bits 4 and 5 of the CTEST2 register can be used to determine the configuration status of the SYM53C810A.

Bit 3 ERL (Enable Read Line)
This bit enables a PCI Read Line command. If PCI cache mode is enabled by setting bits in the PCI Cache Line Size register, the chip issues a Read Line command on all read cycles if other conditions are met. For more information on these conditions, refer to Chapter 3.

Bit 2 ERMP (Enable Read Multiple)
This bit, when set, will cause Read Multiple commands to be issued on the PCI bus after certain conditions have been met. These conditions are described in Chapter 3.

Bit 1 BOF (Burst Op Code Fetch Enable)
Setting this bit causes the SYM53C810A to fetch instructions in burst mode, if the Burst Disable bit (CTEST4, bit7) is cleared. Specifically, the chip will burst in the first two dwords of all instructions using a single bus ownership. If the instruction is a memory-to-memory move type, the third dword will be accessed in a subsequent bus ownership. If the instruction is an indirect type, the additional dword will be accessed in a subsequent bus ownership. If the instruction is a table indirect block move type, the chip will access the remaining two dwords in a subsequent bus ownership, thereby fetching the four dwords required in two bursts of two dwords each.

Bit 0 MAN (Manual Start Mode)
Setting this bit prevents the SYM53C810A from automatically fetching and executing SCSI SCRIPTS when the DSP register is written. When this bit is set, the Start DMA bit in the DCNTL register must be set to begin SCRIPTS execution. Clearing this bit causes the SYM53C810A to automatically begin fetching and executing SCSI SCRIPTS when the DSP register is written. This bit is not normally used for SCSI SCRIPTS operations.
Register 39 (B9)
DMA Interrupt Enable (DIEN)
Read/Write

This register contains the interrupt mask bits corresponding to the interrupting conditions described in the DSTAT register. An interrupt is masked by clearing the appropriate mask bit. Masking an interrupt prevents IRQ/ from being asserted for the corresponding interrupt, but the status bit will still be set in the DSTAT register. Masking an interrupt will not prevent the ISTAT DIP from being set. All DMA interrupts are considered fatal, therefore SCRIPTS will stop running when a DMA interrupt occurs, whether or not the interrupt is masked. Setting a mask bit enables the assertion of IRQ/ for the corresponding interrupt. (A masked non-fatal interrupt will not prevent un-masked or fatal interrupts from getting through, interrupt stacking begins when either the ISTAT SIP or DIP bit is set.)

The SYM53C810A IRQ/ output is latched; once asserted, it will remain asserted until the interrupt is cleared by reading the appropriate status register. Masking an interrupt after the IRQ/ output is asserted will not cause IRQ/ to be deasserted.

For more information on interrupts, see Chapter Two, "Functional Description."

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Reserved</td>
</tr>
<tr>
<td>6</td>
<td>MDPE (Master Data Parity Error)</td>
</tr>
<tr>
<td>5</td>
<td>BF (Bus fault)</td>
</tr>
<tr>
<td>4</td>
<td>ABRT (Aborted)</td>
</tr>
<tr>
<td>3</td>
<td>SSI (Single step interrupt)</td>
</tr>
<tr>
<td>2</td>
<td>SIR (SCRIPTS interrupt instruction received)</td>
</tr>
<tr>
<td>1</td>
<td>Reserved</td>
</tr>
<tr>
<td>0</td>
<td>IID (Illegal instruction detected)</td>
</tr>
</tbody>
</table>

Register 3A (BA)
Scratch Byte Register (SBR)
Read/Write

This is a general purpose register. Apart from CPU access, only Register Read/Write and Memory Moves into this register will alter its contents. The default value of this register is zero. This register was called the DMA Watchdog Timer on previous SYM53C8XX family products.
Register 3B (BB)
DMA Control (DCNTL)
Read/Write

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Setting this bit enables the SYM53C810A to sense and react to cache line boundaries set up by the DMODE or PCI Cache Line Size register, whichever contains the smaller value. Clearing this bit disables the cache line size logic and the SYM53C810A monitors the cache line size via the DMODE register.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>CLSE (Cache Line Size Enable)</td>
<td>Setting this bit enables the SYM53C810A to sense and react to cache line boundaries set up by the DMODE or PCI Cache Line Size register, whichever contains the smaller value. Clearing this bit disables the cache line size logic and the SYM53C810A monitors the cache line size via the DMODE register.</td>
</tr>
<tr>
<td>6</td>
<td>PFF (Pre-Fetch Flush)</td>
<td>Setting this bit will cause the pre-fetch unit to flush its contents. The bit will reset after the flush is complete.</td>
</tr>
<tr>
<td>5</td>
<td>PFEN (Pre-fetch Enable)</td>
<td>Setting this bit enables the pre-fetch unit if the burst size is equal to or greater than four. For more information on SCRIPTS instruction prefetching, see Chapter 2.</td>
</tr>
<tr>
<td>4</td>
<td>SSM (Single-step mode)</td>
<td>Setting this bit causes the SYM53C810A to stop after executing each SCRIPTS instruction, and generate a single step interrupt. When this bit is clear the SYM53C810A will not stop after each instruction; instead it continues fetching and executing instructions until an interrupt condition occurs. This bit should be clear for normal SCSI SCRIPTS operation. To restart the SYM53C810A after it generates a SCRIPTS Step interrupt, read the ISTAT and DSTAT registers to recognize and clear the interrupt; then set the START DMA bit in this register.</td>
</tr>
<tr>
<td>3</td>
<td>IRQM (IRQ Mode)</td>
<td>When set, this bit enables a totem pole driver for the IRQ pin. When reset, this bit enables an open drain driver for the IRQ pin with an internal weak pull-up. This bit is reset at power up.</td>
</tr>
<tr>
<td>2</td>
<td>STD (Start DMA operation)</td>
<td>The SYM53C810A fetches a SCSI SCRIPTS instruction from the address contained in the DSP register when this bit is set. This bit is required if the SYM53C810A is in one of the following modes: 1. Manual start mode – Bit 0 in the DMODE register is set 2. Single-step mode – Bit 4 in the DCNTL register is set. When the SYM53C810A is executing SCRIPTS in manual start mode, the Start DMA bit needs to be set to start instruction fetches. This bit will remain set until an interrupt occurs. When the SYM53C810A is in single-step mode, the Start DMA bit needs to be set to restart execution of SCRIPTS after a single-step interrupt.</td>
</tr>
<tr>
<td>1</td>
<td>IRQD (IRQ Disable)</td>
<td>Setting this bit tristates the IRQ pin; clearing the bit enables normal operation. When bit 1 in this register is set, the IRQ/ pin will not be asserted when an interrupt condition occurs. The interrupt is not lost or ignored, but merely masked at the pin. Clearing this bit when an interrupt is pending will immediately cause the IRQ/ pin to assert. As with any register other than ISTAT, this register cannot be accessed except by a SCRIPTS instruction during SCRIPTS execution.</td>
</tr>
</tbody>
</table>

Default: 00000000
Bit 0 **COM (53C700 compatibility)**
When this bit is clear, the SYM 53C 810A will behave in a manner compatible with the SYM 53C 700; selection/reselection IDs will be stored in both the SSID and SFBR registers.

When this bit is set, the ID will be stored only in the SSID register, protecting the SFBR from being overwritten if a selection/reselection occurs during a DMA register-to-register operation.

This bit is not affected by a software reset.

Register 3C-3F (BC-BF)
Adder Sum Output (ADDER)
Read Only
This register contains the output of the internal adder, and is used primarily for test purposes. The power-up value for this register is indeterminate.
Register 40 (C0)
SCSI Interrupt Enable Zero (SIEN0)
Read/Write

<table>
<thead>
<tr>
<th>M/A</th>
<th>CMP</th>
<th>SEL</th>
<th>RSL</th>
<th>SGE</th>
<th>UDC</th>
<th>RST</th>
<th>PAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

This register contains the interrupt mask bits that correspond to the interrupting conditions described in the SIST0 register. An interrupt is masked by clearing the appropriate mask bit. For more information on interrupts, see Chapter 2.

Bit 7 M/A (SCSI Phase Mismatch - Initiator Mode; SCSI ATN Condition - Target Mode)

In initiator mode, this bit controls whether an interrupt occurs when the SCSI phase asserted by the target and sampled during SREQ/S does not match the expected phase in the SOCL register. This expected phase is automatically written by the SCSI SCRIPTS program. In target mode, this bit is set when the initiator has asserted SATN/. See the Disable Halt on Parity Error or SATN/ Condition bit in the SCNTL1 register for more information on when this status is actually raised.

Bit 6 CMP (Function Complete)

This bit controls whether an interrupt occurs when full arbitration and selection sequence has completed.

Bit 5 SEL (Selected)

This bit controls whether an interrupt occurs when the SYM 53C810A has been selected by a SCSI target device. The Enable Response to Selection bit in the SCID register must be set for this to occur.

Bit 4 RSL (Reselected)

This bit controls whether an interrupt occurs when the SYM 53C810A has been reselected by a SCSI initiator device. The Enable Response to Reselection bit in the SCID register must be set for this to occur.

Bit 3 SGE (SCSI Gross Error)

This bit controls whether an interrupt occurs when the SYM 53C810A detects a SCSI Gross Error. The following conditions are considered SCSI Gross Errors:

1. Data underflow - the SCSI FIFO was read when no data was present.
2. Data overflow - the SCSI FIFO was written to while full.
3. Offset underflow - in target mode, an SACK/ pulse was received before the corresponding SREQ/ was sent.
4. Offset overflow - in initiator mode, an SREQ/ pulse was received which caused the maximum offset (defined by the MO3-0 bits in the SXFER register) to be exceeded.
5. In initiator mode, a phase change occurred with an outstanding SREQ/SACK offset.
6. Residual data in SCSI FIFO - a transfer other than synchronous data receive was started with data left in the SCSI synchronous receive FIFO.

Bit 2 UDC (Unexpected Disconnect)

This bit controls whether an interrupt occurs in the case of an unexpected disconnect. This condition only occurs in initiator mode. It happens when the target to which the SYM 53C810A is connected disconnects from the SCSI bus unexpectedly. See the SCSI Disconnect Unexpected bit in the SCNTL2 register for more information on expected versus unexpected disconnects. Any disconnect in low level mode causes this condition.
Bit 1 RST (SCSI Reset Condition)
This bit controls whether an interrupt occurs when the SRST/ signal has been asserted by the SYM 53C810A or any other SCSI device. Note that this condition is edge-triggered, so that multiple interrupts cannot occur because of a single SRST/ pulse.

Bit 0 PAR (SCSI Parity Error)
This bit controls whether an interrupt occurs when the SYM 53C810A detects a parity error while receiving or sending SCSI data. See the Disable Halt on Parity Error or SAT N/ Condition bits in the SCNTL1 register for more information on when this condition will actually be raised.

Register 41 (C1)
SCSI Interrupt Enable One (SIEN1)
Read/Write

<table>
<thead>
<tr>
<th>RES</th>
<th>RES</th>
<th>RES</th>
<th>RES</th>
<th>RES</th>
<th>STO</th>
<th>GEN</th>
<th>HTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

This register contains the interrupt mask bits corresponding to the interrupting conditions described in the SIST1 register. An interrupt is masked by clearing the appropriate mask bit. For more information on interrupts, refer to Chapter 2, “Functional Description.”

Bits 7-3 Reserved

Bit 2 STO (Selection or Reselection Time-out)
This bit controls whether an interrupt occurs when the SCSI device which the SYM 53C810A was attempting to select or reselect did not respond within the programmed time-out period. See the description of the STIME0 register bits 3-0 for more information on the time-out timer.

Bit 1 GEN (General Purpose Timer Expired)
This bit controls whether an interrupt occurs when the general purpose timer has expired. The time measured is the time between enabling and disabling of the timer. See the description of the STIME1 register, bits 3-0, for more information on the general purpose timer.
Bit 0 **HTH (Handshake to Handshake timer Expired)**
This bit controls whether an interrupt occurs when the handshake-to-handshake timer has expired. The time measured is the SCSI Request to Request (target) or Acknowledge to Acknowledge (initiator) period. See the description of the STIM E0 register, bits 7-4, for more information on the handshake-to-handshake timer.

Register 42 (C2)
SCSI Interrupt Status Zero (SIST 0)
Read Only

<table>
<thead>
<tr>
<th>M/A</th>
<th>CMP</th>
<th>SEL</th>
<th>RSL</th>
<th>SGE</th>
<th>UDC</th>
<th>RST</th>
<th>PAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Default >> 0 0 0 0 0 0 0 0

Reading the SIST 0 register returns the status of the various interrupt conditions, whether or not they are enabled in the SIEN 0 register. Each bit set indicates that the corresponding condition has occurred. Reading the SIST 0 will clear the interrupt status.

Reading this register will clear any bits that are set at the time the register is read, but will not necessarily clear the register because additional interrupts may be pending (the SYM53C810A stacks interrupts). SCSI interrupt conditions may be individually masked through the SIEN 0 register.

When performing consecutive 8-bit reads of the DSTAT, SIST 0, and SIST 1 registers (in any order), insert a delay equivalent to 12 CLK periods between the reads to ensure the interrupts clear properly. Also, if reading the registers when both the ISTAT SIP and DIP bits may not be set, the SIST 0 and SIST 1 registers should be read before the DSTAT register to avoid missing a SCSI interrupt. For more information on interrupts, refer to Chapter 2, “Functional Description.”

Bit 7 **M/A (Initiator Mode: Phase Mismatch; Target Mode: SATN/Active)**
In initiator mode, this bit is set if the SCSI phase asserted by the target does not match the instruction. The phase is sampled when SREQ/ is asserted by the target. In target mode, this bit is set when the SATN/ signal is asserted by the initiator.

Bit 6 **CMP (Function Complete)**
This bit is set when an arbitration only or full arbitration sequence has completed.
Bit 5 SEL (Selected)
This bit is set when the SYM 53C810A is selected by another SCSI device. The Enable Response to Selection bit must have been set in the SCID register (and the RESPID register must hold the chip's ID) for the SYM 53C810A to respond to selection attempts.

Bit 4 RSL (Reselected)
This bit is set when the SYM 53C810A is reselected by another SCSI device. The Enable Response to Reselection bit must have been set in the SCID register (and the RESPID register must hold the chip's ID) for the SYM 53C810A to respond to reselection attempts.

Bit 3 SGE (SCSI Gross Error)
This bit is set when the SYM 53C810A encounters a SCSI Gross Error Condition. The following conditions can result in a SCSI Gross Error Condition:
1. Data Underflow - the SCSI FIFO register was read when no data was present.
2. Data Overflow - too many bytes were written to the SCSI FIFO or the synchronous offset caused the SCSI FIFO to be overwritten.
3. Offset Underflow - the SYM 53C810A is operating in target mode and a SACK/pulse is received when the outstanding offset is zero.
4. Offset Overflow - the other SCSI device sent a SREQ/ or SACK/ pulse with data which exceeded the maximum synchronous offset defined by the SXFER register.
5. A phase change occurred with an outstanding synchronous offset when the SYM 53C810A was operating as an initiator.
6. Residual data in the Synchronous data FIFO - a transfer other than synchronous data receive was started with data left in the synchronous data FIFO.

Bit 2 UDC (Unexpected Disconnect)
This bit is set when the SYM 53C810A is operating in initiator mode and the target device unexpectedly disconnects from the SCSI bus. This bit is only valid when the SYM 53C810A operates in the initiator mode. When the SYM 53C810A operates in low level mode, any disconnect will cause an interrupt, even a valid SCSI disconnect. This bit will also be set if a selection time-out occurs (it may occur before, at the same time, or stacked after the STO interrupt, since this is not considered an expected disconnect).

Bit 1 RST (SCSI RST/ Received)
This bit is set when the SYM 53C810A detects an active SRST/ signal, whether the reset was generated external to the chip or caused by the Assert SRST/ bit in the SCNTL1 register. This SYM 53C810A SCSI reset detection logic is edge-sensitive, so that multiple interrupts will not be generated for a single assertion of the SRST/ signal.

Bit 0 PAR (Parity Error)
This bit is set when the SYM 53C810A detects a parity error while receiving SCSI data. The Enable Parity Checking bit (bit 3 in the SCNTL0 register) must be set for this bit to become active. The SYM 53C810A always generates parity when sending SCSI data.
Register 43 (C3)
SCSI Interrupt Status One (SIST1)
Read Only

<table>
<thead>
<tr>
<th>RES</th>
<th>RES</th>
<th>RES</th>
<th>RES</th>
<th>STO</th>
<th>GEN</th>
<th>HTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Default>>>
X X X X X 0 0 0

Reading the SIST1 register returns the status of the various interrupt conditions, whether or not they are enabled in the SIEN1 register. Each bit that is set indicates the corresponding condition has occurred.

Reading the SIST1 register will clear the interrupt condition.

Bits 7-3 Reserved

Bit 2 STO (Selection or Reselection Time-out)
This bit is set when the SCSI device which the SYM 53C 810A was attempting to select or reselect did not respond within the programmed time-out period. See the description of the STIM E0 register, bits 3-0, for more information on the time-out timer.

Bit 1 GEN (General Purpose Timer Expired)
This bit is set when the general purpose timer has expired. The time measured is the time between enabling and disabling of the timer. See the description of the STIM E1 register, bits 3-0, for more information on the general purpose timer.

Bit 0 HTH (Handshake-to-Handshake Timer Expired)
This bit is set when the handshake-to-handshake timer has expired. The time measured is the SCSI Request to Request (target) or Acknowledge to Acknowledge (initiator) period. See the description of the STIM E0 register, bits 7-4, for more information on the handshake-to-handshake timer.

Register 44 (C4)
SCSI Longitudinal Parity (SLPAR)
Read/Write

This register performs a bytewise longitudinal parity check on all SCSI data received or sent through the SCSI core. If one of the bytes received or sent (usually the last) is the set of correct even parity bits, SLPAR should go to zero (assuming it started at zero). As an example, suppose that the following three data bytes and one check byte are received from the SCSI bus (all signals are shown active high):

<table>
<thead>
<tr>
<th>Data Bytes</th>
<th>Running SLPAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>00000000</td>
</tr>
<tr>
<td>1. 11001100</td>
<td>11001100 (XOR of word 1)</td>
</tr>
<tr>
<td>2. 01010101</td>
<td>10011001 (XOR of word 1 and 2)</td>
</tr>
<tr>
<td>3. 00001111</td>
<td>10010110 (XOR of word 1, 2 and 3)</td>
</tr>
<tr>
<td>4. 10010110</td>
<td>00000000 (Even Parity >>>10010110)</td>
</tr>
</tbody>
</table>

A one in any bit position of the final SLPAR value would indicate a transmission error.

The SLPAR register can also be used to generate the check bytes for SCSI send operations. If the SLPAR register contains all zeros prior to sending a block move, it will contain the appropriate check byte at the end of the block move. This byte must then be sent across the SCSI bus.

Note: writing any value to this register resets it to zero.

The longitudinal parity checks are meant to provide an added measure of SCSI data integrity and are entirely optional. This register does not latch SCSI selection/reselection IDs under any circumstances. The default value of this register is zero.
Register 46 (C6)
Memory Access Control (MACNTL)
Read/Write

<table>
<thead>
<tr>
<th>TYP3</th>
<th>TYP2</th>
<th>TYP1</th>
<th>TYP0</th>
<th>DWR</th>
<th>DRD</th>
<th>PSCPT</th>
<th>SCPTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Default: 0 1 0 0 0 0 0 0

Bits 7-4 TYP3-0 (Chip Type)
These bits identify the chip type for software purposes.

Bits 3 through 0 of this register are used to determine if an external bus master access is to local or far memory. When bits 3 through 0 are set, the corresponding access is considered local and the MAC/_TESTOUT pin is driven high. When these bits are clear, the corresponding access is to far memory and the MAC/_TESTOUT pin is driven low. This function is enabled after a Transfer Control SCRIPTS instruction is executed.

Bit 3 DWR (DataWR)
This bit is used to define if a data write is considered local memory access.

Bit 2 DRD (DataRD)
This bit is used to define if a data read is considered local memory access.

Bit 1 PSCPT (Pointer SCRIPTS)
This bit is used to define if a pointer to a SCRIPTS indirect or table indirect fetch is considered local memory access.

Bit 0 SCPTS (SCRIPTS)
This bit is used to define if a SCRIPTS fetch is considered local memory access.

Register 47 (C7)
General Purpose Pin Control (GPCNTL)
Read/Write

<table>
<thead>
<tr>
<th>ME</th>
<th>FE</th>
<th>RES</th>
<th>RES</th>
<th>RES</th>
<th>RES</th>
<th>GPIO1</th>
<th>GPIO0</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Default: 0 0 x 0 1 1 1 1

This register is used to determine if the pins controlled by the General Purpose register (GP REG) are inputs or outputs. Bits 1-0 in GPCNTL correspond to bits 1-0 in the GPREG register. When the bits are enabled as inputs, an internal pull-up is also enabled.

Bit 7 Master Enable
The internal bus master signal will be presented on GPIO1 if this bit is set, regardless of the state of Bit 1 (GPIO1_EN).

Bit 6 Fetch Enable
The internal op code fetch signal will be presented on GPIO0 if this bit is set, regardless of the state of Bit 0 (GPIO0_EN).

Bit 5 Reserved

Bits 1-0 GPIO1_EN- GPIO0_EN (GPIO Enable)
These bits power up set, causing the GPIO1 and GPIO0 pins to become inputs. Resetting these bits causes GPIO1-0 to become outputs.
Register 48 (C8)
SCSI Timer Zero (STIME0)
Read / Write

<table>
<thead>
<tr>
<th>HTH</th>
<th>HTH</th>
<th>HTH</th>
<th>SEL</th>
<th>SEL</th>
<th>SEL</th>
<th>SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Bits 7-4 HTH (Handshake-to-Handshake Timer Period)

These bits select the handshake-to-handshake time-out period, the maximum time between SCSI handshakes (SREQ/ to SREQ/ in target mode, or SACK/ to SACK/ in initiator mode). When this timing is exceeded, an interrupt is generated and the HTH bit in the SIST1 register is set. The following table contains time-out periods for the Handshake-to-Handshake Timer, the Selection/Reselection Timer (bits 3-0), and the General Purpose Timer (STIME1 bits 3-0). For a more detailed explanation of interrupts, refer to Chapter 2, “Functional Description.”

<table>
<thead>
<tr>
<th>HTH 7-4, SEL 3-0, GEN 3-0</th>
<th>Minimum Time-out</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40 MHz</td>
</tr>
<tr>
<td>0000</td>
<td>Disabled</td>
</tr>
<tr>
<td>0001</td>
<td>125 µs</td>
</tr>
<tr>
<td>0010</td>
<td>250 µs</td>
</tr>
<tr>
<td>0011</td>
<td>500 µs</td>
</tr>
<tr>
<td>0100</td>
<td>1 ms</td>
</tr>
<tr>
<td>0101</td>
<td>2 ms</td>
</tr>
<tr>
<td>0110</td>
<td>4 ms</td>
</tr>
<tr>
<td>0111</td>
<td>8 ms</td>
</tr>
<tr>
<td>1000</td>
<td>16 ms</td>
</tr>
<tr>
<td>1001</td>
<td>32 ms</td>
</tr>
<tr>
<td>1010</td>
<td>64 ms</td>
</tr>
<tr>
<td>1011</td>
<td>128 ms</td>
</tr>
<tr>
<td>1100</td>
<td>256 ms</td>
</tr>
<tr>
<td>1101</td>
<td>512 ms</td>
</tr>
<tr>
<td>1110</td>
<td>1.024 sec</td>
</tr>
<tr>
<td>1111</td>
<td>2.048 sec</td>
</tr>
</tbody>
</table>

These values will be correct if the CCF bits in the SCNTL3 register are set according to the valid combinations in the bit description.

Bits 3-0 SEL (Selection Time-Out)

These bits select the SCSI selection/reselection time-out period. When this timing (plus the 200 µs selection abort time) is exceeded, the STO bit in the SIST1 register is set. For a more detailed explanation of interrupts, refer to Chapter 2, “Functional Description.”
Register 49 (C9)
SCSI Timer One (STIME1)
Read/Write

<table>
<thead>
<tr>
<th>RES</th>
<th>RES</th>
<th>RES</th>
<th>GEN3</th>
<th>GEN2</th>
<th>GEN1</th>
<th>GEN0</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Default: \(\ldots\times x x x x 0 0 0 0\)

Bits 7-4 Reserved

Bits 3-0 GEN3-0 (General Purpose Timer Period)
These bits select the period of the general purpose timer. The time measured is the time between enabling and disabling of the timer. When this timing is exceeded, the GEN bit in the SIST1 register is set. Refer to the table under STIME0, bits 3-0, for the available time-out periods.

Note: to reset a timer before it has expired and to obtain repeatable delays, the time value must be written to zero first, and then written back to the desired value. This is also required when changing from one time value to another. See Chapter 2, “Functional Description,” for an explanation of how interrupts are generated when the timers expire.

Register 4A (CA)
Response ID (RESPID)
Read/Write
This register contains the IDs that the chip responds to on the SCSI bus. Each bit represents one possible ID with the most significant bit representing ID 7 and the least significant bit representing ID 0. The SCID register still contains the chip ID used during arbitration. The chip can respond to more than one ID because more than one bit can be set in the RESPID register. However, the chip can arbitrate with only one ID value in the SCID register.
Register 4C (CC)
SCSI Test Zero (STEST 0)
Read Only

<table>
<thead>
<tr>
<th>RES</th>
<th>SSAID 2</th>
<th>SSAID 1</th>
<th>SSAID 0</th>
<th>SLT</th>
<th>ART</th>
<th>SOZ</th>
<th>SOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Default>>>
X X X X 0 X 1 1

Bit 7
Reserved

Bits 6-4 SSAID (SCSI Selected As ID)
These bits contain the encoded value of the SCSI ID that the SYM 53C810A was selected or reselected as during a SCSI selection or reselection phase. These bits are read only and contain the encoded value of 0-7 possible IDs that could be used to select the SYM 53C810A. During a SCSI selection or reselection phase when a valid ID has been put on the bus, and the 53C810A responds to that ID, the “selected as” ID is written into these bits.

Bit 3
SLT (Selection response logic test)
This bit is set when the SYM 53C810A is ready to be selected or reselected. This does not take into account the bus settle delay of 400 ns. This bit is used for functional test and fault purposes.

Bit 2
ART (Arbitration Priority Encoder Test)
This bit will always be set when the SYM 53C810A exhibits the highest priority ID asserted on the SCSI bus during arbitration. It is primarily used for chip level testing, but it may be used during low level mode operation to determine if the SYM 53C810A has won arbitration.

Bit 1
SOZ (SCSI Synchronous Offset Zero)
This bit indicates that the current synchronous SREQ/SACK offset is zero. This bit is not latched and may change at any time. It is used in low level synchronous SCSI operations. When this bit is set, the SYM 53C810A, as an initiator, is waiting for the target to request data transfers. If the SYM 53C810A is a target, then the initiator has sent the offset number of acknowledges.

Bit 0
SOM (SCSI Synchronous Offset Maximum)
This bit indicates that the current synchronous SREQ/SACK offset is the maximum specified by bits 3-0 in the SCSI Transfer register. This bit is not latched and may change at any time. It is used in low level synchronous SCSI operations. When this bit is set, the SYM 53C810A, as a target, is waiting for the initiator to acknowledge the data transfers. If the SYM 53C810A is an initiator, then the target has sent the offset number of requests.
Register 4D (CD)
SCSI Test One (STEST1)
Read/Write

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>SCLK</td>
</tr>
<tr>
<td>6</td>
<td>SISO (SCSI Isolation Mode)</td>
</tr>
<tr>
<td>5</td>
<td>RES</td>
</tr>
<tr>
<td>4</td>
<td>RES</td>
</tr>
<tr>
<td>3</td>
<td>RES</td>
</tr>
<tr>
<td>2</td>
<td>RES</td>
</tr>
<tr>
<td>1</td>
<td>RES</td>
</tr>
<tr>
<td>0</td>
<td>RES</td>
</tr>
</tbody>
</table>

Bit 7 SCLK
This bit, when set, disables the external SCLK (SCSI Clock) pin, and causes the chip to use the PCI clock as the internal SCSI clock. If a transfer rate of 10 MB/s is to be achieved on the SCSI bus, this bit must be cleared and the chip must be connected to at least a 40 MHz external SCLK.

Bit 6 SISO (SCSI Isolation Mode)
This bit allows the SYM53C810A to put the SCSI bi-directional and input pins into a low power mode when the SCSI bus is not in use. When this bit is set, the SCSI bus inputs are logically isolated from the SCSI bus.

Bits 5-0 Reserved

Register 4E (CE)
SCSI Test Two (STEST2)
Read/Write

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>SCE (SCSI Control Enable)</td>
</tr>
<tr>
<td>6</td>
<td>ROF (Reset SCSI Offset)</td>
</tr>
<tr>
<td>5</td>
<td>RES</td>
</tr>
<tr>
<td>4</td>
<td>SLB (SCSI Loopback Mode)</td>
</tr>
<tr>
<td>3</td>
<td>SZM (SCSI High-Impedance Mode)</td>
</tr>
<tr>
<td>2</td>
<td>RES</td>
</tr>
<tr>
<td>1</td>
<td>EXT</td>
</tr>
<tr>
<td>0</td>
<td>LOW</td>
</tr>
</tbody>
</table>

Bit 7 SCE (SCSI Control Enable)
This bit, when set, allows all SCSI control and data lines to be asserted through the SOCL and SODL registers regardless of whether the SYM53C810A is configured as a target or initiator.

Note: This bit should not be set during normal operation, since it could cause contention on the SCSI bus. It is included for diagnostic purposes only.

Bit 6 ROF (Reset SCSI Offset)
Setting this bit clears any outstanding synchronous SREQ/SACK offset. This bit should be set if a SCSI gross error condition occurs, to clear the offset when a synchronous transfer does not complete successfully. The bit automatically clears itself after resetting the synchronous offset.

Bit 5 Reserved

Bit 4 SLB (SCSI Loopback Mode)
Setting this bit allows the SYM53C810A to perform SCSI loopback diagnostics. This is, it enables the SCSI core to simultaneously perform as both initiator and target.

Bit 3 SZM (SCSI High-Impedance Mode)
Setting this bit places all the open-drain 48 mA SCSI drivers into a high-impedance state. This is to allow internal loopback mode operation without affecting the SCSI bus.

Bit 2 Reserved
Bit 1 EXT (Extend SREQ/SACK filtering)
Symbios Logic TolerANT SCSI receiver technology includes a special digital filter on the SREQ/ and SACK/ pins which will cause glitches on deasserting edges to be disregarded. Setting this bit will increase the filtering period from 30ns to 60ns on the deasserting edge of the SREQ/ and SACK/ signals.

Note: this bit must never be set during fast SCSI (greater than 5M transfers per second) operations, because a valid assertion could be treated as a glitch.

Bit 0 LOW (SCSI Low level Mode)
Setting this bit places the SYM 53C810A in low level mode. In this mode, no DMA operations occur, and no SCRIPTS execute. Arbitration and selection may be performed by setting the start sequence bit as described in the SCNTL0 register. SCSI bus transfers are performed by manually asserting and polling SCSI signals. Clearing this bit allows instructions to be executed in SCSI SCRIPTS mode.

Note: it is not necessary to set this bit for access to the SCSI bit-level registers (SODL, SBCL, and input registers).

Register 4F (CF)
SCSI Test Three (STEST 3)
Read/Write

<table>
<thead>
<tr>
<th></th>
<th>TE</th>
<th>STR</th>
<th>HSC</th>
<th>DSI</th>
<th>RES</th>
<th>TIM</th>
<th>CSF</th>
<th>STW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Bit 7 TE (TolerANT Enable)
Setting this bit enables the active negation portion of TolerANT technology. Active negation causes the SCSI Request, Acknowledge, Data, and Parity signals to be actively deasserted, instead of relying on external pull-ups, when the SYM 53C810A is driving these signals. Active deassertion of these signals will occur only when the SYM 53C810A is in an information transfer phase. TolerANT active negation should be enabled to improve setup and deassertion times at fast SCSI timings. Active negation is disabled after reset or when this bit is cleared. For more information on TolerANT technology, refer to Chapter 1.

Bit 6 STR (SCSI FIFO Test Read)
Setting this bit places the SCSI core into a test mode in which the SCSI FIFO can be easily read. Reading the SODL register will cause the FIFO to unload.

Bit 5 HSC (Halt SCSI Clock)
Asserting this bit causes the internal divided SCSI clock to come to a stop in a glitchless manner. This bit may be used for test purposes or to lower I_{DD} during a power down mode.
Bit 4 DSI (Disable Single Initiator Response)
If this bit is set, the SYM 53C810A will ignore all bus-initiated selection attempts that employ the single-initiator option from SCSI-1. In order to select the SYM 53C810A while this bit is set, the SYM 53C810A’s SCSI ID and the initiator’s SCSI ID must both be asserted. This bit should be asserted in SCSI-2 systems so that a single bit error on the SCSI bus will not be interpreted as a single initiator response.

Bit 3 Reserved

Bit 2 TTM (Timer Test Mode)
Setting this bit facilitates testing of the selection time-out, general purpose, and handshake-to-handshake timers by greatly reducing all three time-out periods. Setting this bit starts all three timers and, if the respective bits in the SIEN1 register are set, causes the SYM 53C810A to generate interrupts at time-out. This bit is intended for internal manufacturing diagnosis and should not be used.

Bit 1 CSF (Clear SCSI FIFO)
Setting this bit will cause the “full flags” for the SCSI FIFO to be cleared. This empties the FIFO. This bit is self-resetting. In addition, the SCSI FIFO pointers, the SIDL, SODL, and SODR Full bits in the SSTAT0 register are cleared.

Bit 0 STW (SCSI FIFO Test Write)
Setting this bit places the SCSI core into a test mode in which the FIFO can easily be written. While this bit is set, writes to the SODL register will cause the entire word contained in this register to be loaded into the FIFO. Writing the least significant byte of the SODL register will cause the FIFO to load.

Register 50 (D0)
SCSI Input Data Latch (SIDL)
Read Only
This register is used primarily for diagnostic testing, programmed I/O operation or error recovery. Data received from the SCSI bus can be read from this register. Data can be written to the SODL register and then read back into the SYM 53C810A by reading this register to allow loopback testing. When receiving SCSI data, the data will flow into this register and out to the host FIFO. This register differs from the SBDL register; SIDL contains latched data and the SBDL always contains exactly what is currently on the SCSI data bus. Reading this register causes the SCSI parity bit to be checked, and will cause a parity error interrupt if the data is not valid. The power-up values are indeterminate.
<table>
<thead>
<tr>
<th>Registers 54 (D 4)</th>
<th>Registers 58 (D 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCSI Output Data Latch (SODL)</td>
<td>SCSI Bus Data Lines (SBDL)</td>
</tr>
<tr>
<td>Read/Write</td>
<td>Read Only</td>
</tr>
</tbody>
</table>

This register is used primarily for diagnostic testing or programmed I/O operation. Data written to this register is asserted onto the SCSI data bus by setting the Assert Data Bus bit in the SCNTL1 register. This register is used to send data via programmed I/O. Data flows through this register when sending data in any mode. It is also used to write to the synchronous data FIFO when testing the chip. The power-up value of this register is indeterminate.

This register contains the SCSI data bus status. Even though the SCSI data bus is active low, these bits are active high. The signal status is not latched and is a true representation of exactly what is on the data bus at the time the register is read. This register is used when receiving data via programmed I/O. This register can also be used for diagnostic testing or in low level mode. The power-up value of this register is indeterminate.
Registers 5C-5F (DC-DF)
Scratch Register B (SCRATCHB) (Read/Write)

This is a general purpose user definable scratch pad register. Apart from CPU access, only Register Read/Write and Memory Moves directed at the SCRATCH register will alter its contents. The power-up values are indeterminate.

The SYM53C810A cannot fetch SCRIPTS instructions from this location.
Operating Registers
Chapter 6
Instruction Set of the I/O Processor

After power up and initialization of the SYM53C810A, the chip can operate in the low level register interface mode, or using SCSI SCRIPTS.

With the low level register interface, the user has access to the DMA control logic and the SCSI bus control logic. An external processor has access to the SCSI bus signals and the low level DMA signals, which allows creation of complicated board level test algorithms. The low level interface is useful for backward compatibility with SCSI devices that require certain unique timings or bus sequences to operate properly. Another feature allowed at the low level is loopback testing. In loopback mode, the SCSI core can be directed to talk to the DMA core to test internal data paths all the way out to the chip’s pins.

SCSI SCRIPTS

To operate in the SCSI SCRIPTS mode, the SYM53C810A requires only a SCRIPTS start address. The start address must be at a dword (four byte) boundary. This aligns the following SCRIPTS at a dword boundary, since all SCRIPTS are 8 or 12 bytes long. All instructions are fetched from external memory. The SYM53C810A fetches and executes its own instructions by becoming a bus master on the host bus and fetching two or three 32-bit words into its registers. Instructions are fetched until an interrupt instruction is encountered, or until an unexpected event (such as a hardware error) causes an interrupt to the external processor.

Once an interrupt is generated, the SYM53C810A halts all operations until the interrupt is serviced. Then, the start address of the next SCRIPTS instruction may be written to the DMA SCRIPTS Pointer register to restart the automatic fetching and execution of instructions.

The SCSI SCRIPTS mode of execution allows the SYM53C810A to make decisions based on the status of the SCSI bus, so that the microprocessor does not have to service all of the interrupts inherent in I/O operations.

Given the rich set of SCSI-oriented features included in the instruction set, and the ability to re-enter the SCSI algorithm at any point, this high level interface is all that is required for both normal and exception conditions. There is no need to switch to low level mode for error recovery.

Five types of SCRIPTS instructions are implemented in the SYM53C810A:

- **Block Move**—used to move data between the SCSI bus and memory
- **I/O or Read/Write**—causes the SYM53C810A to trigger common SCSI hardware sequences, or to move registers
- **Transfer Control**—allows SCRIPTS instructions to make decisions based on real time SCSI bus conditions
- **Memory Move**—causes the SYM53C810A to execute block moves between different parts of main memory
- **Load and Store**—provides a more efficient way to move data to/from memory from/to an internal register in the chip without using the Memory Move instruction.

Each instruction consists of two or three 32-bit words. The first 32-bit word is always loaded into the DCM and DBC registers, the second into the DPS register. The third word, used only by Memory Move instructions, is loaded into the TEMP shadow register. In an indirect I/O or Memory Move instruction, the first two 32-bit op code fetches will be followed by one or two more 32-bit fetch cycles.
Sample Operation

The following example describes execution of a SCRIPTS instruction. This sample operation is for a Block Move instruction. Figure 6-1 illustrates a SCRIPTS Initiator Write operation, which uses several Block Move instructions.

1. The host CPU, through programmed I/O, gives the DMA SCRIPTS Pointer (DSP) register (in the Operating Register file) the starting address in main memory that points to a SCSI SCRIPTS program for execution.

2. Loading the DSP register causes the SYM53C810A to request use of the PCI bus to fetch its first instruction from main memory at the address just loaded.

3. The SYM53C810A typically fetches two dwords (64 bits) and decodes the high order byte of the first dword as a SCRIPTS instruction. If the instruction is a Block Move, the lower three bytes of the first dword are stored and interpreted as the number of bytes to be moved. The second dword is stored and interpreted as the 32-bit beginning address in main memory to which the move is directed.

4. For a SCSI send operation, the SYM53C810A waits until there is enough space in the DMA FIFO to transfer a programmable size block of data. For a SCSI receive operation, it waits until enough data is collected in the DMA FIFO for transfer to memory.

5. SYM53C810A requests use of the PCI bus again, this time for data transfers.

6. When the SYM53C810A is again granted the PCI bus, it will execute (as a bus master) a burst transfer (programmable size) of data, decrement the internally stored remaining byte count, increment the address pointer, and then release the PCI bus. The SYM53C810A stays off the PCI bus until the FIFO can again hold (for a write) or has collected (for a read) enough data to repeat the process.

The process repeats until the internally stored byte count has reached zero. The SYM53C810A releases the PCI bus and then requests use of the PCI bus again for another SCRIPTS instruction fetch cycle, using the incremented stored address maintained in the DMA SCRIPTS Pointer register. Execution of SCRIPTS instructions continues until an error condition occurs or an interrupt SCRIPTS instruction is received. At this point, the SYM53C810A interrupts the host CPU and waits for further servicing by the host system. It can execute independent Block Move instructions, specifying new byte counts and starting locations in main memory. In this manner, the SYM53C810A performs scatter/gather operations on data without requiring help from the host program, generating a host interrupt, or requiring an external DMA controller to be programmed.
SCSI Initiator Write Example

- select ATN 0, alt_addr
- move 1, identify_msg_buf, when MSG_OUT
- move 6, cmd_buf, when CMD
- move 512, data_buf, when DATA_OUT
- move 1, stat_in_buf, when STATUS
- move 1, msg_in_buf, when MSG_IN
- move SCNTL2 & 7F to SCNTL2
- clear ACK
- wait disconnect alt2
- int 10
Block Move Instructions

The Block Move SCRIPTS instruction is used to move data between the SCSI bus and memory. For a Block Move instruction, the SYM53C810A operates much like a chaining DMA device with a SCSI controller attached. Figure 6-2 illustrates the register bit values that represent a Block Move instruction. In Block Move instructions, bits 5 and 4 (SIOM and DIOM) in the MODE register determine whether the source/destination address resides in memory or I/O space. When data is being moved onto the SCSI bus, SIOM controls whether that data comes from I/O or memory space. When data is being moved off of the SCSI bus, DIOM controls whether that data goes to I/O or memory space.

First Dword

Bits 31-30 Instruction Type - Block Move

Bit 29 Indirect Addressing

When this bit is cleared, user data is moved to or from the 32-bit data start address for the Block Move instruction. The value is loaded into the chip’s address register and incremented as data is transferred. The address of data to be moved is in the second dword of this instruction.

When set, the 32-bit user data start address for the Block Move is the address of a pointer to the actual data buffer address. The value at the 32-bit start address is loaded into the chip’s D N A D register via a third dword fetch (4-byte transfer across the host computer bus).

Direct

The byte count and absolute address are as follows.

<table>
<thead>
<tr>
<th>Command</th>
<th>Byte Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address of Data</td>
<td></td>
</tr>
</tbody>
</table>

Indirect

Use the fetched byte count, but fetch the data address from the address in the instruction.

<table>
<thead>
<tr>
<th>Command</th>
<th>Byte Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address of Pointer to Data</td>
<td></td>
</tr>
</tbody>
</table>

Once the data pointer address is loaded, it is executed as when the chip operates in the direct mode. This indirect feature allows a table of data buffer addresses to be specified. Using the SCSI SCRIPTS assembler, the table offset is placed in the SCRIPTS file when the program is assembled. Then at the actual data transfer time, the offsets are added to the base address of the data address table by the external processor. The logical I/O driver builds a structure of addresses for an I/O rather than treating each address individually. This feature makes it possible to locate SCSI SCRIPTS in a PROM.

Note: indirect and table indirect addressing cannot be used simultaneously; only one addressing method can be used at a time.

Bit 28 Table Indirect

When this bit is set, the 24-bit signed value in the start address of the move is treated as a relative displacement from the value in the DSA register. Both the transfer count and the source/destination address are fetched from this address.

<table>
<thead>
<tr>
<th>Command</th>
<th>Not Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Don’t Care</td>
<td>Table Offset</td>
</tr>
</tbody>
</table>

Use the signed integer offset in bits 23-0 of the second four bytes of the instruction, added to the value in the DSA register, to fetch first the byte count and then the data address. The signed value is combined with the data structure base address to generate the physical address used to fetch values from the data structure. Sign-extended values of all ones for negative values are allowed, but bits 31-24 are ignored.
Figure 6-2: Block Move Instruction Register
Prior to the start of an I/O, the Data Structure Base Address register (DSA) should be loaded with the base address of the I/O data structure. The address may be any address on a long word boundary.

After a Table Indirect op code is fetched, the DSA is added to the 24-bit signed offset value from the op code to generate the address of the required data; both positive and negative offsets are allowed. A subsequent fetch from that address brings the data values into the chip.

For a MOVE instruction, the 24-bit byte count is fetched from system memory. Then the 32-bit physical address is brought into the SYM53C810A. Execution of the move begins at this point.

SCRIPTS can directly execute operating system I/O data structures, saving time at the beginning of an I/O operation. The I/O data structure can begin on any dword boundary and may cross system segment boundaries.

There are two restrictions on the placement of pointer data in system memory: the eight bytes of data in the MOVE instruction must be contiguous, as shown below; and indirect data fetches are not available during execution of a Memory-to-Memory DMA operation.

<table>
<thead>
<tr>
<th>Bit 27 Op Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Target Mode

<table>
<thead>
<tr>
<th>OPC</th>
<th>Instruction Defined</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>MOVE</td>
</tr>
<tr>
<td>1</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

1. The SYM53C810A verifies that it is connected to the SCSI bus as a target before executing this instruction.

2. The SYM53C810A asserts the SCSI phase signals (SM SG/, SC_D/, and SI_O/) as defined by the Phase Field bits in the instruction.

3. If the instruction is for the command phase, the SYM53C810A receives the first command byte and decodes its SCSI Group Code.

 a) If the SCSI Group Code is either Group 0, Group 1, Group 2, or Group 5, then the SYM53C810A overwrites the DBC register with the length of the Command Descriptor Block: 6, 10, or 12 bytes.

 b) If any other Group Code is received, the DBC register is not modified and the SYM53C810A will request the number of bytes specified in the DBC register. If the DBC register contains 000000h, an illegal instruction interrupt is generated.

4. The SYM53C810A transfers the number of bytes specified in the DBC register starting at the address specified in the DNAD register.

5. If the SATN/ signal is asserted by the initiator or a parity error occurred during the transfer, the transfer can optionally be halted and an interrupt generated. The Disable Halt on Parity Error or ATN bit in the SCNTL1 register controls whether the SYM53C810A will halt on these conditions immediately, or wait until completion of the current Move.
Initiator Mode

<table>
<thead>
<tr>
<th>OPC</th>
<th>Instruction Defined</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>MOVE</td>
</tr>
</tbody>
</table>

1. The SYM 53C 810A verifies that it is connected to the SCSI bus as an initiator before executing this instruction.

2. The SYM 53C 810A waits for an unserviced phase to occur. An unserviced phase is defined as any phase (with SREQ/ asserted) for which the SYM 53C 810A has not yet transferred data by responding with a SACK/.

3. The SYM 53C 810A compares the SCSI phase bits in the DCM D register with the latched SCSI phase lines stored in the SSTAT 1 register. These phase lines are latched when SREQ/ is asserted.

4. If the SCSI phase bits match the value stored in the SSTAT 1 register, the SYM 53C 810A will transfer the number of bytes specified in the DBC register starting at the address pointed to by the DNAD register.

5. If the SCSI phase bits do not match the value stored in the SSTAT 1 register, the SYM 53C 810A generates a phase mismatch interrupt and the instruction is not executed.

6. During a Message Out phase, after the SYM 53C 810A has performed a Select with Attention (or SATN/ has been manually asserted with a Set AT N instruction), the SYM 53C 810A will deassert SAT N/ during the final SREQ/SACK handshake of the first move of Message Out bytes after SAT N/ was set.

7. When the SYM 53C 810A is performing a block move for Message In phase, it will not deassert the SACK/ signal for the last SREQ/SACK handshake. The SACK signal must be cleared using the Clear SACK I/O instruction.

Bits 26-24 SCSI Phase

This 3-bit field defines the desired SCSI information transfer phase. When the SYM 53C 810A operates in initiator mode, these bits are compared with the latched SCSI phase bits in the SSTAT 1 register. When the SYM 53C 810A operates in target mode, the SYM 53C 810A asserts the phase defined in this field. The following table describes the possible combinations and the corresponding SCSI phase.

<table>
<thead>
<tr>
<th>MSG</th>
<th>C/D</th>
<th>I/O</th>
<th>SCSI Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Data out</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Data in</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Command</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Status</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Reserved out</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Reserved in</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Message out</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Message in</td>
</tr>
</tbody>
</table>

Bits 23-0 Transfer Counter

This 24-bit field specifies the number of data bytes to be moved between the SYM 53C 810A and system memory. The field is stored in the DBC register. When the SYM 53C 810A transfers data to/from memory, the DBC register is decremented by the number of bytes transferred. In addition, the DNAD register is incremented by the number of bytes transferred. This process is repeated until the DBC register has been decremented to zero. At that time, the SYM 53C 810A fetches the next instruction.

If bit 28 is set, indicating table indirect addressing, this field is not used. The byte count is instead fetched from a table pointed to by the DSA register.
Second D word

Bits 31-0 Start Address

This 32-bit field specifies the starting address of the data to be moved to/from memory. This field is copied to the DNAD register. When the SYM53C810A transfers data to or from memory, the DNAD register is incremented by the number of bytes transferred. When bit 29 is set, indicating indirect addressing, this address is a pointer to an address in memory that points to the data location. When bit 28 is set, indicating table indirect addressing, the value in this field is an offset into a table pointed to by the DSA. The table entry contains byte count and address information.

I/O Instructions

The I/O SCRIPTS instruction causes the SYM53C810A to trigger common SCSI hardware sequences such as Set/Clear ACK, Set/Clear ATN, Set/Clear Target Mode, Select With ATN, or Wait for Reselect. Figure 6-3 illustrates the register bit values that represent an I/O instruction.

First D word

Bits 31-30 Instruction Type - I/O Instruction Bits 29-27 Op Code

The following Op Code bits have different meanings, depending on whether the SYM53C810A is operating in initiator or target mode. Note: Op Code selections 101-111 are considered Read/Write instructions, and are described in that section.

Target Mode

<table>
<thead>
<tr>
<th>OPC2</th>
<th>OPC1</th>
<th>OPC0</th>
<th>Instruction Defined</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Reselect</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Disconnect</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Wait Select</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Set</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Clear</td>
</tr>
</tbody>
</table>

Reselect Instruction

1. The SYM53C810A arbitrates for the SCSI bus by asserting the SCSI ID stored in the SCID register. If the SYM53C810A loses arbitration, then it tries again during the next available arbitration cycle without reporting any lost arbitration status.

2. If the SYM53C810A wins arbitration, it attempts to reselect the SCSI device whose ID is defined in the destination ID field of the instruction. Once the SYM53C810A has won arbitration, it fetches the next instruction from the address pointed to by the DSP register.
3. Therefore, the SCRIPTS can move on to the next instructions before the reselection has completed. It will continue executing SCRIPTS until a SCRIPTS instruction that requires a response from the initiator is encountered.

4. If the SYM 53C 810A is selected or reselected before winning arbitration, it fetches the next instruction from the address pointed to by the 32-bit jump address field stored in the DNAD register. The SYM 53C 810A should manually be set to initiator mode if it is reselected, or to target mode if it is selected.

Disconnect Instruction
The SYM 53C 810A disconnects from the SCSI bus by deasserting all SCSI signal outputs.

Wait Select Instruction
1. If the SYM 53C 810A is selected, it fetches the next instruction from the address pointed to by the DSP register.

2. If reselected, the SYM 53C 810A fetches the next instruction from the address pointed to by the 32-bit jump address field stored in the DNAD register. The SYM 53C 810A should manually be set to initiator mode when reselected.

3. If the CPU sets the SIGP bit in the ISTAT register, the SYM 53C 810A will abort the Wait Select instruction and fetch the next instruction from the address pointed to by the 32-bit jump address field stored in the DNAD register.

Set Instruction
When the SACK / or SAT N / bits are set, the corresponding bits in the SOCL register are set. SACK / or SAT N / should not be set except for testing purposes. When the target bit is set, the corresponding bit in the SCNTL0 register is also set. When the carry bit is set, the corresponding bit in the Arithmetic Logic Unit (ALU) is set.

Note: none of the signals are set on the SCSI bus in target mode.
Figure 6-3: I/O Instruction Register
Clear Instruction
When the SACK/ or SAT N/ bits are set, the corresponding bits are cleared in the SOCL register. SACK/ or SAT N/ should not be set except for testing purposes. When the target bit is set, the corresponding bit in the SCNTL0 register is cleared. When the carry bit is set, the corresponding bit in the ALU is cleared.

Note: none of the signals are reset on the SCSI bus in target mode.

Initiator Mode

<table>
<thead>
<tr>
<th>OPC2</th>
<th>OPC1</th>
<th>OPC0</th>
<th>Instruction Defined</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Select</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Wait Disconnect</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Wait Reselect</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Set</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Clear</td>
</tr>
</tbody>
</table>

Select Instruction
1. The SYM53C810A arbitrates for the SCSI bus by asserting the SCSI ID stored in the SCID register. If the SYM53C810A loses arbitration, it tries again during the next available arbitration cycle without reporting any lost arbitration status.

2. If the SYM53C810A wins arbitration, it attempts to select the SCSI device whose ID is defined in the destination ID field of the instruction. Once the SYM53C810A has won arbitration, it fetches the next instruction from the address pointed to by the DSP register. Therefore, the SCRIPT S program can move to the next instruction before the selection has completed. It will continue executing SCRIPT S until a SCRIPT S instruction that requires a response from the target is encountered.

3. If the SYM53C810A is selected or reselected before winning arbitration, it fetches the next instruction from the address pointed to by the 32-bit jump address field stored in the DNAD register. The SYM53C810A should manually be set to initiator mode if it is reselected, or to target mode if it is selected.

4. If the Select with SAT N/ field is set, the SAT N/ signal is asserted during the selection phase.

Wait Disconnect Instruction
1. The SYM53C810A waits for the target to perform a “legal” disconnect from the SCSI bus. A “legal” disconnect occurs when SBSY/ and SSEL/ are inactive for a minimum of one Bus Free delay (400 ns), after the SYM53C810A has received a Disconnect Message or a Command Complete Message.

Wait Reselect Instruction
1. If the SYM53C810A is selected before being reselected, it fetches the next instruction from the address pointed to by the 32-bit jump address field stored in the DNAD register. The SYM53C810A should be manually set to target mode when selected.

2. If the SYM53C810A is reselected, it fetches the next instruction from the address pointed to by the DNAD register. The SYM53C810A will abort the Wait Reselect instruction and fetch the next instruction from the address pointed to by the 32-bit jump address field stored in the DNAD register.

Clear Instruction
When the SACK/ or SAT N/ bits are set, the corresponding bits in the SOCL register are set. When the Target bit is set, the corresponding bit in the SCNTL0 register is also set. When the Carry bit is set, the corresponding bit in the ALU is set.
the SCNTL0 register is cleared. When the Carry bit is set, the corresponding bit in the ALU is cleared.

Bit 26 Relative Addressing Mode

When this bit is set, the 24-bit signed value in the DNAD register is used as a relative displacement from the current DSP address. This bit should only be used in conjunction with the Select, Reselect, Wait Select, and Wait Reselect instructions. The Select and Reselect instructions can contain an absolute alternate jump address or a relative transfer address.

Bit 25 Table Indirect Mode

When this bit is set, the 24-bit signed value in the DBC register is added to the value in the DSA register, used as an offset relative to the value in the Data Structure Base Address (DSA) register. The SCNTL3 value, SCSI ID, synchronous offset and synchronous period are loaded from this address. Prior to the start of an I/O, the DSA should be loaded with the base address of the I/O data structure. The address may be any address on a dword boundary. After a Table Indirect op code is fetched, the DSA is added to the 24-bit signed offset value from the op code to generate the address of the required data; both positive and negative offsets are allowed. A subsequent fetch from that address brings the data values into the chip.

SCRIPTS can directly execute operating system I/O data structures, saving time at the beginning of an I/O operation. The I/O data structure can begin on any dword boundary and may cross system segment boundaries.

1. The I/O data structure must lie within the 8 MB above or below the base address.

2. An I/O command structure must have all four bytes contiguous in system memory, as shown below. The offset/period bits are ordered as in the SXFER register. The configuration bits are ordered as in the SCNTL3 register.

<table>
<thead>
<tr>
<th>Config</th>
<th>ID</th>
<th>Offset/period</th>
<th>(00)</th>
</tr>
</thead>
</table>

This bit should only be used in conjunction with the Select, Reselect, Wait Select, and Wait Reselect instructions. Bits 25 and 26 may be set individually or in combination:

<table>
<thead>
<tr>
<th>Bit 25</th>
<th>Bit 26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td>0</td>
</tr>
<tr>
<td>Table Indirect</td>
<td>0</td>
</tr>
<tr>
<td>Relative</td>
<td>1</td>
</tr>
<tr>
<td>Table Relative</td>
<td>1</td>
</tr>
</tbody>
</table>

Direct

Uses the device ID and physical address in the instruction.

Table Indirect

Uses the physical jump address, but fetches data using the table indirect method.

Relative

Uses the device ID in the instruction, but treats the alternate address as a relative jump.
Table Relative
Treats the alternate jump address as a relative jump and fetches the device ID, synchronous offset, and synchronous period indirectly. Adds the value in bits 23-0 of the first four bytes of the SCRIPTS instruction to the data structure base address to form the fetch address.

<table>
<thead>
<tr>
<th>Command</th>
<th>Table Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alternate Jump Offset</td>
</tr>
</tbody>
</table>

Bit 24 Select with ATN/
This bit specifies whether SAT N / will be asserted during the selection phase when the SYM 53C 810A is executing a Select instruction. When operating in initiator mode, set this bit for the Select instruction. If this bit is set on any other I/O instruction, an illegal instruction interrupt is generated.

Bits 18-16 Encoded SCSI Destination ID
This 3-bit field specifies the destination SCSI ID for an I/O instruction.

Bit 10 Set/Clear Carry
This bit is used in conjunction with a Set or Clear instruction to set or clear the Carry bit. Setting this bit with a Set instruction asserts the Carry bit in the ALU. Setting this bit with a Clear instruction deasserts the Carry bit in the ALU.

Bit 9 Set/Clear Target Mode
This bit is used in conjunction with a Set or Clear instruction to set or clear target mode. Setting this bit with a Set instruction configures the SYM 53C 810A as a target device (this sets bit 0 of the SCNTL0 register). Clearing this bit with a Clear instruction configures the SYM 53C 810A as an initiator device (this clears bit 0 of the SCNTL0 register).

Bit 6 Set/Clear SACK/
Bit 3 Set/Clear SATN/
These two bits are used in conjunction with a Set or Clear instruction to assert or deassert the corresponding SCSI control signal. Bit 6 controls the SCSI SACK / signal; bit 3 controls the SCSI SAT N / signal.

Setting either of these bits will set or reset the corresponding bit in the SOCL register, depending on the instruction used. The Set instruction is used to assert SACK / and/or SAT N / on the SCSI bus. The Clear instruction is used to deassert SACK / and/or SAT N / on the SCSI bus.

Since SACK / and SAT N / are initiator signals, they will not be asserted on the SCSI bus unless the SYM 53C 810A is operating as an initiator or the SCSI Loopback Enable bit is set in the STEST2 register.

The Set/Clear SCSI ACK/ATN instruction would be used after message phase Block Move operations to give the initiator the opportunity to assert attention before acknowledging the last message byte. For example, if the initiator wishes to reject a message, an Assert SCSI AT N instruction would be issued before a Clear SCSI ACK instruction.

Bits 2-0 Reserved

Second Dword

Bits 31-0 Start Address
This 32-bit field contains the memory address to fetch the next instruction if the selection or reselection fails.

If relative or table relative addressing is used, this value is a 24-bit signed offset relative to the current DSP register value.
Read/Write Instructions

The Read/Write Instruction type moves the contents of one register to another, or performs arithmetic operations such as AND, OR, XOR, Addition, and Shift. Figure 6-4 illustrates the register bit values that represent a Read/Write instruction.

First D word

Bits 31-30 Instruction Type - Read/Write Instruction
The Read/Write instruction uses operator bits 26 through 24 in conjunction with the op code bits to determine which instruction is currently selected.

Bits 29-27 Op Code
The combinations of these bits determine if the instruction is a Read/Write or an I/O instruction. Op codes 000 through 100 are considered I/O instructions. Refer to Table 6-1 for field definitions.

Bits 26-24 Operator
These bits are used in conjunction with the op code bits to determine which instruction is currently selected. Refer to Table 6-1 for field definitions.

Bits 22-16 Register Address - A(6-0)
Register values may be changed from SCRIPTS in read-modify-write cycles or move to/from SFBR cycles. A(6-0) select an 8-bit source/destination register within the SYM 53C810A.

Second D word

Bits 31-0 Destination Address
This field contains the 32-bit destination address where the data is to be moved.

Read-Modify-Write Cycles
During these cycles the register is read, the selected operation is performed, and the result is written back to the source register.
The Add operation can be used to increment or decrement register values (or memory values if used in conjunction with a Memory-to-Register Move operation) for use as loop counters.

Move to/from SFBR Cycles
All operations are read-modify-writes. However, two registers are involved, one of which is always the SFBR. The possible functions of this instruction are:
- Write one byte (value contained within the SCRIPTS instruction) into any chip register.
- Move to/from the SFBR from/to any other register.
- Alter the value of a register with AND/OR/ADD/XOR/SHIFT LEFT/SHIFT RIGHT operators.
- After moving values to the SFBR, the compare and jump, call, or similar instructions may be used to check the value.
- A Move-to-SFBR followed by a Move-from-SFBR can be used to perform a register to register move.
Figure 6-4: Read/Write Register Instruction
Table 6-1: Read/Write Instructions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>Move data into register. Syntax: “Move data8 to RegA”</td>
<td>Move data into SFBR register. Syntax: “Move data8 to SFBR”</td>
<td>Move data into register. Syntax: “Move data8 to RegA”</td>
</tr>
<tr>
<td>001*</td>
<td>Shift register one bit to the left and place the result in the same register. Syntax: “Move RegA SHL RegA”</td>
<td>Shift register one bit to the left and place the result in the SFBR register. Syntax: “Move RegA SHL SFBR”</td>
<td>Shift the SFBR register one bit to the left and place the result in the register. Syntax: “Move SFBR SHL RegA”</td>
</tr>
<tr>
<td>010</td>
<td>OR data with register and place the result in the same register. Syntax: “Move RegA</td>
<td>data8 to RegA”</td>
<td>OR data with register and place the result in the SFBR register. Syntax: “Move RegA</td>
</tr>
<tr>
<td>011</td>
<td>XOR data with register and place the result in the same register. Syntax: “Move RegA XOR data8 to RegA”</td>
<td>XOR data with register and place the result in the SFBR register. Syntax: “Move RegA XOR data8 to SFBR”</td>
<td>XOR data with SFBR and place the result in the register. Syntax: “Move SFBR XOR data8 to RegA”</td>
</tr>
<tr>
<td>100</td>
<td>AND data with register and place the result in the same register. Syntax: “Move RegA & data8 to RegA”</td>
<td>AND data with register and place the result in the SFBR register. Syntax: “Move RegA & data8 to SFBR”</td>
<td>AND data with SFBR and place the result in the register. Syntax: “Move SFBR & data8 to RegA”</td>
</tr>
<tr>
<td>101*</td>
<td>Shift register one bit to the right and place the result in the same register. Syntax: “Move RegA SHR RegA”</td>
<td>Shift register one bit to the right and place the result in the SFBR register. Syntax: “Move RegA SHR SFBR”</td>
<td>Shift the SFBR register one bit to the right and place the result in the register. Syntax: “Move SFBR SHR RegA”</td>
</tr>
<tr>
<td>110</td>
<td>Add data to register without carry and place the result in the same register. Syntax: “Move RegA + data8 to RegA”</td>
<td>Add data to register without carry and place the result in the SFBR register. Syntax: “Move RegA + data8 to SFBR”</td>
<td>Add data to SFBR without carry and place the result in the register. Syntax: “Move SFBR + data8 to RegA”</td>
</tr>
<tr>
<td>111</td>
<td>Add data to register with carry and place the result in the same register. Syntax: “Move RegA + data8 to RegA with carry”</td>
<td>Add data to register with carry and place the result in the SFBR register. Syntax: “Move RegA + data8 to SFBR with carry”</td>
<td>Add data to SFBR with carry and place the result in the register. Syntax: “Move SFBR + data8 to RegA with carry”</td>
</tr>
</tbody>
</table>

Notes:
1. Substitute the desired register name or address for “RegA” in the syntax examples.
2. data8 indicates eight bits of data.
3. Data is shifted through the Carry bit and the Carry bit is shifted into the data byte.
Transfer Control Instructions

The Transfer Control, or Conditional Jump, instruction allows you to write scripts that make decisions based on real time conditions on the SCSI bus, such as phase or data. This instruction type includes Jump, Call, Return, and Interrupt instructions. Figure 6-5 illustrates the register bit values that represent a Transfer Control instruction.

First D word

Bits 31-30 Instruction Type - Transfer Control Instruction
Bits 29-27 Op Code

This 3-bit field specifies the type of transfer control instruction to be executed. All transfer control instructions can be conditional. They can be dependent on a true/false comparison of the ALU Carry bit or a comparison of the SCSI information transfer phase with the Phase field, and/or a comparison of the First Byte Received with the Data Compare field. Each instruction can operate in initiator or target mode.

<table>
<thead>
<tr>
<th>OPC2</th>
<th>OPC1</th>
<th>OPC0</th>
<th>Instruction Defined</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Jump</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Call</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Return</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Interrupt</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Jump Instruction

1. The SYM 53C 810A can do a true/false comparison of the ALU carry bit, or compare the phase and/or data as defined by the Phase Compare, Data Compare, and True/False bit fields. If the comparisons are true, the SYM 53C 810A loads the DSP register with the contents of the D SP S register and that address value becomes the address of the next instruction.

2. If the comparisons are false, the SYM 53C 810A fetches the next instruction from the address pointed to by the DSP register, leaving the instruction pointer unchanged.

Call Instruction

1. The SYM 53C 810A can do a true/false comparison of the ALU carry bit, or compare the phase and/or data as defined by the Phase Compare, Data Compare, and True/False bit fields. If the comparisons are true, the SYM 53C 810A loads the DSP register with the contents of the D S P S register and that address value becomes the address of the next instruction.

When the SYM 53C 810A executes a Call instruction, the instruction pointer contained in the D S P S register is stored in the T E M P register. Since the T E M P register is not a stack and can only hold one dword, nested call instructions are not allowed.

2. If the comparisons are false, the SYM 53C 810A fetches the next instruction from the address pointed to by the DSP register and the instruction pointer is not modified.

Return Instruction

1. The SYM 53C 810A can do a true/false comparison of the ALU carry bit, or compare the phase and/or data as defined by the Phase Compare, Data Compare, and True/False bit fields. If the comparisons are true, then the SYM 53C 810A loads the DSP register with the contents of the D S P S register. That address value becomes the address of the next instruction.

When a Return instruction is executed, the value stored in the T E M P register is returned to the DSP register. The SYM 53C 810A does not check to see whether the Call instruction has already been executed. It will not generate an interrupt if a Return instruction is executed without previously executing a Call instruction.
Figure 6-5: Transfer Control Instruction
2. If the comparisons are false, then the SYM53C810A fetches the next instruction from the address pointed to by the DSP register and the instruction pointer will not be modified.

Interrupt Instructions

Interrupt

a) The SYM53C810A can do a true/false comparison of the ALU carry bit, or compare the phase and/or data as defined by the Phase Compare, Data Compare, and True/False bit fields. If the comparisons are true, then the SYM53C810A generates an interrupt by asserting the IRQ/ signal.

b) The 32-bit address field stored in the DSPS register (not DNAD as in 53C700) can contain a unique interrupt service vector. When servicing the interrupt, this unique status code allows the ISR to quickly identify the point at which the interrupt occurred.

c) The SYM53C810A halts and the DSP register must be written to start any further operation.

Interrupt on-the-Fly

a) The SYM53C810A can do a true/false comparison of the ALU carry bit or compare the phase and/or data as defined by the Phase Compare, Data Compare, and True/False bit fields. If the comparisons are true, and the Interrupt on the Fly bit is set (bit 20), the SYM53C810A will assert the Interrupt on the Fly bit (ISTAT bit 2).

Bits 26-24 SCSI Phase

This 3-bit field corresponds to the three SCSI bus phase signals which are compared with the phase lines latched when SREQ/ is asserted. Comparisons can be performed to determine the SCSI phase actually being driven on the SCSI bus. The following table describes the possible combinations and their correspond-

<table>
<thead>
<tr>
<th>MSG</th>
<th>C/D</th>
<th>I/O</th>
<th>SCSI Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Data out</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Data in</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Command</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Status</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Reserved out</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Reserved in</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Message out</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Message in</td>
</tr>
</tbody>
</table>

Bit 23 Relative Addressing Mode

When this bit is set, the 24-bit signed value in the DSPS register is used as a relative offset from the current DSP address (which is pointing to the next instruction, not the one currently executing). Relative mode does not apply to Return and Interrupt SCRIPTS.

Jump/Call an Absolute Address

Start execution at the new absolute address.

<table>
<thead>
<tr>
<th>Command</th>
<th>Condition Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute Alternate Address</td>
<td></td>
</tr>
</tbody>
</table>

Jump/Call a Relative Address

Start execution at the current address plus (or minus) the relative offset.

<table>
<thead>
<tr>
<th>Command</th>
<th>Condition Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Don’t Care</td>
<td>Alternate Jump Offset</td>
</tr>
</tbody>
</table>

T he SCRIPTS program counter is a 32-bit value pointing to the SCRIPTS instruction currently being executed by the SYM53C810A. The next address is formed by adding the 32-bit program counter to the 24-bit signed value of the last 24 bits of the Jump
or Call instruction. Because it is signed (two's complement), the jump can be forward or backward.

A relative transfer can be to any address within a 16-MB segment. The program counter is combined with the 24-bit signed offset (using addition or subtraction) to form the new execution address.

SCRIPTS programs may contain a mixture of direct jumps and relative jumps to provide maximum versatility when writing SCRIPTS. For example, major sections of code can be accessed with far calls using the 32-bit physical address, then local labels can be called using relative transfers. If a SCRIPTS instruction uses only relative transfers it would not require any run time alteration of physical addresses, and could be stored in and executed from a PROM.

Bit 21 Carry Test

When this bit is set, decisions based on the ALU carry bit can be made. True/False comparisons are legal, but Data Compare and Phase Compare are illegal.

Bit 20 Interrupt on the Fly

When this bit is set, the Interrupt instruction will not halt the SCRIPTS processor. Once the interrupt occurs, the Interrupt on the Fly bit (ISTAT bit 2) will be asserted.

Bit 19 Jump If True/False

This bit determines whether the SYM53C810A should branch when a comparison is true or when a comparison is false. This bit applies to phase compares, data compares, and carry tests. If both the Phase Compare and Data Compare bits are set, then both compares must be true to branch on a true condition. Both compares must be false to branch on a false condition.

<table>
<thead>
<tr>
<th>Bit 19 Result of Compare</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 False</td>
<td>Jump Taken</td>
</tr>
<tr>
<td>0 True</td>
<td>No Jump</td>
</tr>
<tr>
<td>1 False</td>
<td>No Jump</td>
</tr>
<tr>
<td>1 True</td>
<td>Jump Taken</td>
</tr>
</tbody>
</table>

Bit 18 Compare Data

When this bit is set, the first byte received from the SCSI data bus (contained in SF BR register) is compared with the Data to be Compared Field in the Transfer Control instruction. The Wait for Valid Phase bit controls when this compare will occur. The Jump if True/False bit determines the condition (true or false) to branch on.

Bit 17 Compare Phase

When the SYM53C810A is in initiator mode, this bit controls phase compare operations. When this bit is set, the SCSI phase signals (latched by SREQ/) are compared to the Phase Field in the Transfer Control instruction; if they match, the comparison is true. The Wait for Valid Phase bit controls when the compare will occur. When the SYM53C810A is operating in target mode this bit, when set, tests for an active SCSI SATN/ signal.

Bit 16 Wait For Valid Phase

If the Wait for Valid Phase bit is set, the SYM53C810A waits for a previously unserviced phase before comparing the SCSI phase and data. If the Wait for Valid Phase bit is clear, the SYM53C810A compares the SCSI phase and data immediately.
Bits 15-8 Data Compare Mask
The Data Compare Mask allows a SCRIPTS instruction to test certain bits within a data byte. During the data compare, any mask bits that are set cause the corresponding bit in the SFBR data byte to be ignored. For instance, a mask of 01111111b and data compare value of 1XXXXXXXb allows the SCRIPTS processor to determine whether or not the high order bit is set while ignoring the remaining bits.

Bits 7-0 Data Compare Value
This 8-bit field is the data to be compared against the SCSI First Byte Received (SFBR) register. These bits are used in conjunction with the Data Compare Mask Field to test for a particular data value.

Second Dword

Bits 31-0 Jump Address
This 32-bit field contains the address of the next instruction to fetch when a jump is taken. Once the SYM53C810A has fetched the instruction from the address pointed to by these 32 bits, this address is incremented by 4, loaded into the DSP register and becomes the current instruction pointer.

Memory Move Instructions
This SCRIPTS Instruction allows the SYM53C810A to execute high performance block moves of 32-bit data from one part of main memory to another. In this mode, the SYM53C810A is an independent, high performance DMA controller irrespective of SCSI operations. Since the registers of the SYM53C810A can be mapped into system memory, this SCRIPTS instruction also moves an SYM53C810A register to or from memory or another SYM53C810A register. Figure 6-6 illustrates the register bit values that represent a Memory Move instruction.

For Memory Move instructions, bits 5 and 4 (SIOM and DIOM) in the DMODE register determine whether the source or destination addresses reside in memory or I/O space. By setting these bits appropriately, data may be moved within memory space, within I/O space, or between the two address spaces.

The Memory Move instruction is used to copy the specified number of bytes from the source address to the destination address.

Allowing the SYM53C810A to perform memory moves frees the system processor for other tasks and moves data at higher speeds than available from current DMA controllers. Up to 16 MB may be transferred with one instruction. There are two restrictions:

1. Both the source and destination addresses must start with the same address alignment (A(1-0) must be the same). If source and destination are not aligned, then an illegal instruction interrupt will occur.

2. Indirect addresses are not allowed. A burst of data is fetched from the source address, put into the DMA FIFO and then written out to the destination address. The move continues until the byte count decrements to zero, then another SCRIPTS instruction is fetched from system memory.
Figure 6-6: Memory to Memory Move Instruction
The DSPS and DSA registers are additional holding registers used during the Memory Move; however, the contents of the DSA register are preserved.

First D word

Bits 31-30 Instruction Type - Memory Move Instruction

Bits 29-25 Reserved

These bits are reserved and must be zero. If any of these bits is set, an illegal instruction interrupt will occur.

Bit 24 No Flush

Note: this bit has no effect unless the Pre-fetch Enable bit in the DCNTL register is set. For information on SCRIPTS instruction prefetching, see Chapter 2.

When this bit is set, the SYM53C810A performs a Memory Move (MMOV) without flushing the prefetch unit (NFMMOV). When this bit is clear, the Memory Move instruction automatically flushes the prefetch unit. NFMMOV should be used if the source and destination are not within four instructions of the current MMOV instruction.

Bits 23-0 Transfer Count

The number of bytes to be transferred is stored in the lower 24 bits of the first instruction word.

Second D word

Bits 31-0, DSPS Register

These bits contain the source address of the Memory Move.

Third D word

Bits 31-0, TEMP Register

These bits contain the destination address for the Memory Move.

Read/Write System Memory from a SCRIPTS Instruction

By using the Memory Move instruction, single or multiple register values may be transferred to or from system memory.

Because the SYM53C810A will respond to addresses as defined in the Base I/O or Base Memory registers, it could be accessed during a Memory Move operation if the source or destination address decodes to within the chip's register space. If this occurs, the register indicated by the lower seven bits of the address is taken to be the data source or destination. In this way, register values can be saved to system memory and later restored, and SCRIPTS can make decisions based on data values in system memory.

The SFBR is not writable via the CPU, and therefore not by a Memory Move. However, it can be loaded via SCRIPTS Read/Write operations. To load the SFBR with a byte stored in system memory, the byte must first be moved to an intermediate SYM53C810A register (for example, a Scratch register), and then to the SFBR.

The same address alignment restrictions apply to register access operations as to normal memory-to-memory transfers.
Load and Store Instructions

The Load and Store instruction provides a more efficient way to move data from/to memory to/from an internal register in the chip without using the normal memory move instruction.

The load and store instructions are represented by two-dword op codes. The first dword contains the DCM D and DB C register values. The second dword contains the DSPS value. This is either the actual memory location of where to load or store, or the offset from the D S A, depending on the value of Bit 28 (DSA Relative).

A maximum of 4 bytes may be moved with these instructions. The register address and memory address must have the same byte alignment, and the count set such that it does not cross dword boundaries. The destination memory address in the Store instruction and the source address in the Load instruction may not map back to the operating register set of the chip. If it does, a PCI illegal read/write cycle will occur, and the chip will issue an interrupt (Illegal Instruction Detected) immediately following.

First Dword

Bit 31-29, Instruction Type

These bits should be 111, indicating the Load and Store instruction.

Bit 28, DSA Relative

When this bit is clear, the value in the DSPS is the actual 32-bit memory address to perform the load/store to/from. When this bit is set, the chip determines the memory address to perform the load/store to/from by adding the 24-bit signed offset value in the DSPS to the DSA.

Bits 27-26, Reserved

Bit 25, No Flush (Store instruction only)

Note: this bit has no effect unless the Pre-fetch Enable bit in the DCNTL register is set. For information on SCRIPTS instruction prefetching, see Chapter 2.

When this bit is set, the SYM 53C810A performs a Store without flushing the prefetch unit. When this bit is clear, the Store instruction automatically flushes the prefetch unit. No Flush should be used if the source and destination are not within four instructions of the current Store instruction.

Bit 24, Load/Store

When this bit is set, the instruction is a Load. When cleared, it is a Store.

Bit 23, Reserved

Bits 22-16, Register Address

A6-A0 select the register to load/store to/from within the SYM 053C 810A.

Note: It is not possible to load the SFBR register, although the SFBR contents may be stored in another location.

Bits 15-3, Reserved

Bits 2-0, Byte Count

This value is the number of bytes to load/store.

Second Dword

Bits 31-0, Memory/I/O Address / DSA Offset

This is the actual memory location of where to load or store, or the offset from the DSA register value.

Bits A1, A0

<table>
<thead>
<tr>
<th>A1, A0</th>
<th>Number of bytes allowed to load/store</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>One, two, three or four</td>
</tr>
<tr>
<td>01</td>
<td>One, two, or three.</td>
</tr>
<tr>
<td>10</td>
<td>One or two</td>
</tr>
<tr>
<td>11</td>
<td>One</td>
</tr>
</tbody>
</table>
Instruction Set of the I/O Processor
Load and Store Instructions

Figure 6-7: Load and Store Instruction Format
Instruction Set of the I/O Processor
Load and Store Instructions
Chapter 7
Electrical Characteristics

This chapter presents electrical and timing information for the SYM53C810A, using tables and timing diagrams. Table 7-1 through Table 7-11 list the stress ratings, operating conditions, and DC characteristics of the SYM53C810A. Table 7-12 and Figure 7-1 through Figure 7-5 show the effect of TolerANT technology on the DC characteristics of the chip. The following section of this chapter presents the AC characteristics of the SYM53C810A. The chip timings are presented in two sections. The first is the PCI and external memory interface, followed by the SCSI interface timings.

DC Characteristics

<table>
<thead>
<tr>
<th>Table 7-1: Absolute Maximum Stress Ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>TSTG</td>
</tr>
<tr>
<td>VDD</td>
</tr>
<tr>
<td>VIN</td>
</tr>
<tr>
<td>ILP*</td>
</tr>
<tr>
<td>ESD**</td>
</tr>
</tbody>
</table>

Stresses beyond those listed above may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions beyond those indicated in the Operating Conditions section of the manual is not implied.

* -2V < VIN < 8V

** SCSI pins only
Electrical Characteristics

DC Characteristics

Table 7-2: Operating Conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>DD</sub></td>
<td>Supply voltage</td>
<td>4.75</td>
<td>5.25</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I<sub>DD*</sub></td>
<td>Supply current (dynamic)</td>
<td>-</td>
<td>130</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supply current (static)</td>
<td>-</td>
<td>1</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>T<sub>A</sub></td>
<td>Operating free air</td>
<td>0</td>
<td>70</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>θ<sub>JA</sub></td>
<td>Thermal resistance (junction to ambient air)</td>
<td>-</td>
<td>67</td>
<td>°C/W</td>
<td></td>
</tr>
</tbody>
</table>

Conditions that exceed the operating limits may cause the device to function incorrectly

*Average operating supply current is 50 mA.

Table 7-3: SCSI Signals - SD(7-0)/, SDP/, SREQ/ SACK/

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>IH</sub></td>
<td>Input high voltage</td>
<td>2.0</td>
<td>V<sub>DD</sub> + 0.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V<sub>IL</sub></td>
<td>Input low voltage</td>
<td>V<sub>SS</sub> - 0.5</td>
<td>0.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V<sub>OH*</sub></td>
<td>Output high voltage</td>
<td>2.5</td>
<td>3.5</td>
<td>V</td>
<td>2.5 mA</td>
</tr>
<tr>
<td>V<sub>OL</sub></td>
<td>Output low voltage</td>
<td>V<sub>SS</sub></td>
<td>0.5</td>
<td>V</td>
<td>48 mA</td>
</tr>
<tr>
<td>I<sub>IN</sub></td>
<td>Input leakage</td>
<td>-10</td>
<td>10</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I<sub>OZ</sub></td>
<td>Tristate leakage</td>
<td>-10</td>
<td>10</td>
<td>μA</td>
<td></td>
</tr>
</tbody>
</table>

Tolerant active negation enabled
Table 7-4: SCSI Signals - SMSG, SI_O/, SC_D/, SATN/, SBSY/, SSEL/, SRST/

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH}</td>
<td>Input high voltage</td>
<td>2.0</td>
<td>$V_{DD} + 0.5$</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Input low voltage</td>
<td>$V_{SS} - 0.5$</td>
<td>0.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Output low voltage</td>
<td>V_{SS}</td>
<td>0.5</td>
<td>V</td>
<td>48 mA</td>
</tr>
<tr>
<td>I_{IN}</td>
<td>Input leakage (SRST / only)</td>
<td>-10</td>
<td>+10</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{OZ}</td>
<td>Tristate leakage</td>
<td>-10</td>
<td>10</td>
<td>μA</td>
<td></td>
</tr>
</tbody>
</table>

Note: V_{IH}, V_{IL}, V_{OL}, I_{IN}, and SRST have 100 μA pull-ups that are enabled when TESTIN is low. TESTIN has a 100 μA pull-up that is always enabled.

Table 7-5: Input Signals - CLK, SCLK, GNT/, IDSEL, RST/, TESTIN

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH}</td>
<td>Input high voltage</td>
<td>2.0</td>
<td>$V_{DD} + 0.5$</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Input low voltage</td>
<td>$V_{SS} - 0.5$</td>
<td>0.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{IN}</td>
<td>Input leakage</td>
<td>-1.0</td>
<td>1.0</td>
<td>μA</td>
<td></td>
</tr>
</tbody>
</table>

Note: CLK, SCLK, GNT/, and IDSEL have 100 μA pull-ups that are enabled when TESTIN is low. TESTIN has a 100 μA pull-up that is always enabled.

Table 7-6: Capacitance

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{I}</td>
<td>Input capacitance of input pads</td>
<td>-</td>
<td>7</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>C_{IO}</td>
<td>Input capacitance of I/O pads</td>
<td>-</td>
<td>10</td>
<td>pF</td>
<td></td>
</tr>
</tbody>
</table>
Table 7-7: Output Signal - MAC/_TESTOUT, REQ/

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OH}</td>
<td>Output high voltage</td>
<td>2.4</td>
<td>V_{DD}</td>
<td>V</td>
<td>-16 mA</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Output low voltage</td>
<td>V_{SS}</td>
<td>0.4</td>
<td>V</td>
<td>16 mA</td>
</tr>
<tr>
<td>I_{OH}</td>
<td>Output high current</td>
<td>-8</td>
<td>-</td>
<td>mA</td>
<td>V_{DD} - 0.5 V</td>
</tr>
<tr>
<td>I_{OL}</td>
<td>Output low current</td>
<td>16</td>
<td>-</td>
<td>mA</td>
<td>0.4 V</td>
</tr>
<tr>
<td>I_{OZ}</td>
<td>Tristate leakage</td>
<td>-10</td>
<td>10</td>
<td>μA</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: REQ/ has a 100 μA pull-up that is enabled when TESTIN is low.

Table 7-8: Output Signal - IRQ/

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OH}</td>
<td>Output high voltage</td>
<td>2.4</td>
<td>V_{DD}</td>
<td>V</td>
<td>-8 mA</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Output low voltage</td>
<td>V_{SS}</td>
<td>0.4</td>
<td>V</td>
<td>8 mA</td>
</tr>
<tr>
<td>I_{OH}</td>
<td>Output high current</td>
<td>-4</td>
<td>-</td>
<td>mA</td>
<td>V_{DD} - 0.5 V</td>
</tr>
<tr>
<td>I_{OL}</td>
<td>Output low current</td>
<td>8</td>
<td>-</td>
<td>mA</td>
<td>0.4 V</td>
</tr>
<tr>
<td>I_{OZ}</td>
<td>Tristate leakage</td>
<td>-10</td>
<td>10</td>
<td>μA</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: IRQ/ has a 100 μA pull-up that is enabled when TESTIN is low. IRQ/ can be enabled with a register bit as an open drain output with an internal 100 μA pull-up.

Table 7-9: Output Signal - SERR/

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OL}</td>
<td>Output low voltage</td>
<td>V_{SS}</td>
<td>0.4</td>
<td>V</td>
<td>16 mA</td>
</tr>
<tr>
<td>I_{OL}</td>
<td>Output low current</td>
<td>16</td>
<td>-</td>
<td>mA</td>
<td>0.4 V</td>
</tr>
<tr>
<td>I_{OZ}</td>
<td>Tristate leakage</td>
<td>-10</td>
<td>10</td>
<td>μA</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 7-10: Bidirectional Signals - AD(31-0), C_BE/(3-0), FRAME, IRDY/, TRDY/, DEVSEL/, STOP/, PERR/, PAR

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IH})</td>
<td>Input high voltage</td>
<td>2.0</td>
<td>(V_{DD} + 0.5)</td>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>Input low voltage</td>
<td>(V_{SS} - 0.5)</td>
<td>0.8</td>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>Output high voltage</td>
<td>2.4</td>
<td>(V_{DD})</td>
<td>V</td>
<td>16 mA</td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Output low voltage</td>
<td>(V_{SS})</td>
<td>0.4</td>
<td>V</td>
<td>16 mA</td>
</tr>
<tr>
<td>(I_{OH})</td>
<td>Output high current</td>
<td>-8</td>
<td>-</td>
<td>mA</td>
<td>(V_{DD} - 0.5)</td>
</tr>
<tr>
<td>(I_{OL})</td>
<td>Output low current</td>
<td>16</td>
<td>-</td>
<td>mA</td>
<td>0.4 V</td>
</tr>
<tr>
<td>(I_{IN})</td>
<td>Input leakage</td>
<td>-10</td>
<td>10</td>
<td>(\mu A)</td>
<td>(V_{SS} < V_{IN} < V_{DD})</td>
</tr>
<tr>
<td>(I_{OZ})</td>
<td>Tristate leakage</td>
<td>-10</td>
<td>10</td>
<td>(\mu A)</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: All the signals in this table have 100\(\mu A\) pull-ups that are enabled when TESTIN is low.

Table 7-11: Bidirectional Signals - GPIO0_FETCH/, GPIO1_MASTER/

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IH})</td>
<td>Input high voltage</td>
<td>2.0</td>
<td>(V_{DD} + 0.5)</td>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>Input low voltage</td>
<td>(V_{SS} - 0.5)</td>
<td>0.8</td>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>Output high voltage</td>
<td>2.4</td>
<td>(V_{DD})</td>
<td>V</td>
<td>-16 mA</td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Output low voltage</td>
<td>(V_{SS})</td>
<td>0.4</td>
<td>V</td>
<td>16 mA</td>
</tr>
<tr>
<td>(I_{OH})</td>
<td>Output high current</td>
<td>-8</td>
<td>-</td>
<td>mA</td>
<td>2.4 V</td>
</tr>
<tr>
<td>(I_{OL})</td>
<td>Output low current</td>
<td>16</td>
<td>-</td>
<td>mA</td>
<td>0.4 V</td>
</tr>
<tr>
<td>(I_{IN})</td>
<td>Input leakage</td>
<td>-10</td>
<td>10</td>
<td>(\mu A)</td>
<td>-</td>
</tr>
<tr>
<td>(I_{OZ})</td>
<td>Tristate leakage</td>
<td>-10</td>
<td>10</td>
<td>(\mu A)</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: All the signals in this table have 100\(\mu A\) pull-ups that are enabled when TESTIN is low.
TolerANT Technology

Table 7-12: TolerANT Active Negation Technology Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OH}</td>
<td>Output high voltage</td>
<td>2.5</td>
<td>3.5</td>
<td>V</td>
<td>$I_{OH} = 2.5$ mA</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Output low voltage</td>
<td>0.1</td>
<td>0.5</td>
<td>V</td>
<td>$I_{OL} = 48$ mA</td>
</tr>
<tr>
<td>V_{IH}</td>
<td>Input high voltage</td>
<td>2.0</td>
<td>7.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Input low voltage</td>
<td>-0.5</td>
<td>0.8</td>
<td>V</td>
<td>Referenced to V_{SS}</td>
</tr>
<tr>
<td>V_{IK}</td>
<td>Input clamp voltage</td>
<td>-0.66</td>
<td>-0.77</td>
<td>V</td>
<td>$V_{DD} = 4.75$; $I_I = -20$ mA</td>
</tr>
<tr>
<td>V_{TH}</td>
<td>Threshold, high to low</td>
<td>1.1</td>
<td>1.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{TL}</td>
<td>Threshold, low to high</td>
<td>1.5</td>
<td>1.7</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$V_{TH}^{\text{Hysteresis}}$</td>
<td>Hysteresis</td>
<td>200</td>
<td>400</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>I_{OH}</td>
<td>Output high current</td>
<td>2.5</td>
<td>24</td>
<td>mA</td>
<td>$V_{OH} = 2.5$ V</td>
</tr>
<tr>
<td>I_{OL}</td>
<td>Output low current</td>
<td>100</td>
<td>200</td>
<td>mA</td>
<td>$V_{OL} = 0.5$ V</td>
</tr>
<tr>
<td>I_{OSH}</td>
<td>Short-circuit output high current</td>
<td>-</td>
<td>625</td>
<td>mA</td>
<td>Output driving low, pin shorted to V_{DD} supply^2</td>
</tr>
<tr>
<td>I_{OSL}</td>
<td>Short-circuit output low current</td>
<td>-</td>
<td>95</td>
<td>mA</td>
<td>Output driving high, pin shorted to V_{SS} supply</td>
</tr>
<tr>
<td>I_{LH}</td>
<td>Input high leakage</td>
<td>-</td>
<td>10</td>
<td>μA</td>
<td>$-0.5 < V_{DD} < 5.25$ $V_{PIN} = 2.7$ V</td>
</tr>
<tr>
<td>I_{LL}</td>
<td>Input low leakage</td>
<td>-</td>
<td>-10</td>
<td>μA</td>
<td>$-0.5 < V_{DD} < 5.25$ $V_{PIN} = 0.5$ V</td>
</tr>
<tr>
<td>R_{i}</td>
<td>Input resistance</td>
<td>20</td>
<td>-</td>
<td>M Ω</td>
<td>SCSI pins^3</td>
</tr>
<tr>
<td>C_{P}</td>
<td>Capacitance per pin</td>
<td>-</td>
<td>10</td>
<td>pF</td>
<td>PQFP</td>
</tr>
<tr>
<td>t_{R}^{1}</td>
<td>Rise time, 10% to 90%</td>
<td>9.7</td>
<td>18.5</td>
<td>ns</td>
<td>Figure 7-1</td>
</tr>
</tbody>
</table>

Note: These values are guaranteed by periodic characterization; they are not 100% tested on every device.

1 Active negation outputs only: Data, Parity, SREQ/, SACK/

2 Single pin only; irreversible damage may occur if sustained for one second

3 SCSI RESET pin has 10 kΩ pull-up resistor.
Table 7-12: TolerANT Active Negation Technology Electrical Characteristics (Continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_F</td>
<td>Fall time, 90% to 10%</td>
<td>5.2</td>
<td>14.7</td>
<td>ns</td>
<td>Figure 7-1</td>
</tr>
<tr>
<td>dV_{H}/dt</td>
<td>Slew rate, low to high</td>
<td>0.15</td>
<td>0.49</td>
<td>V/ns</td>
<td>Figure 7-1</td>
</tr>
<tr>
<td>dV_{L}/dt</td>
<td>Slew rate, high to low</td>
<td>0.19</td>
<td>0.52</td>
<td>V/ns</td>
<td>Figure 7-1</td>
</tr>
<tr>
<td>ESD</td>
<td>Electrostatic discharge</td>
<td>2</td>
<td>-</td>
<td>KV</td>
<td>MIL-STD-883C; 3015-7</td>
</tr>
<tr>
<td></td>
<td>Latch-up</td>
<td>100</td>
<td>-</td>
<td>mA</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Filter delay</td>
<td>20</td>
<td>30</td>
<td>ns</td>
<td>Figure 7-2</td>
</tr>
<tr>
<td></td>
<td>Extended filter delay</td>
<td>40</td>
<td>60</td>
<td>ns</td>
<td>Figure 7-2</td>
</tr>
</tbody>
</table>

Note: These values are guaranteed by periodic characterization; they are not 100% tested on every device.
1. Active negation outputs only: Data, Parity, SREQ/, SACK/.
2. Single pin only; irreversible damage may occur if sustained for one second.
3. SCSI RESET pin has 10 kΩ pull-up resistor.

Figure 7-1: Rise and Fall Time Test Conditions

- t_1 is the input filtering period
- V_{TH}

Figure 7-2: SCSI Input Filtering

- t_1 is the input filtering period
- $20 \mu F$
Figure 7-3: Hysteresis of SCSI Receiver

Figure 7-4: Input Current as a Function of Input Voltage

Figure 7-5: Output Current as a Function of Output Voltage
AC Characteristics

The AC characteristics described in this section apply over the entire range of operating conditions (refer to the DC Characteristics section). Chip timings are based on simulation at worst case voltage, temperature, and processing. Timings were developed with a load capacitance of 50 pF.

Table 7-13: Clock Timing

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₁</td>
<td>Bus clock cycle time</td>
<td>30</td>
<td>DC</td>
<td>ns</td>
</tr>
<tr>
<td>t₂</td>
<td>SCSI clock cycle time (SCLK)*</td>
<td>25</td>
<td>60</td>
<td>ns</td>
</tr>
<tr>
<td>t₃</td>
<td>CLK low time**</td>
<td>12</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t₄</td>
<td>CLK high time**</td>
<td>12</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t₅</td>
<td>SCLK low time**</td>
<td>10</td>
<td>33</td>
<td>ns</td>
</tr>
<tr>
<td>t₆</td>
<td>SCLK high time**</td>
<td>10</td>
<td>33</td>
<td>ns</td>
</tr>
</tbody>
</table>

* This parameter must be met to insure SCSI timings are within specification

** Duty cycle not to exceed 60/40
Table 7-14: Reset Input Timings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₁</td>
<td>Reset pulse width</td>
<td>10</td>
<td>-</td>
<td>t_{CLK}</td>
</tr>
<tr>
<td>t₂</td>
<td>Reset deasserted setup to CLK high</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
</tbody>
</table>

Table 7-15: Interrupt Output Timings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₁</td>
<td>CLK high to IRQ/ low</td>
<td>-</td>
<td>20</td>
<td>ns</td>
</tr>
<tr>
<td>t₂</td>
<td>CLK high to IRQ/ high</td>
<td>-</td>
<td>40</td>
<td>ns</td>
</tr>
<tr>
<td>t₃</td>
<td>IRQ/ deassertion time</td>
<td>3</td>
<td>-</td>
<td>CLKs</td>
</tr>
</tbody>
</table>
PCI Interface Timing Diagrams

Figure 7-9 through Figure 7-18 represent signal activity when the SYM53C810A accesses the PCI bus. The timings for the PCI bus interface are listed on page 7-22. The following timing diagrams are included in this section:

Target Cycles
- PCI configuration register read
- PCI configuration register write
- Target read
- Target write

Initiator Cycles
- Op code fetch, non-burst
- Burst op code fetch
- Back-to-back read
- Back-to-back write
- Burst read
- Burst write
Figure 7-9: PCI Configuration Register Read
Figure 7-10: PCI Configuration Register Write
Figure 7-11: Target Read
Figure 7-12: Target Write
Figure 7-13: Op Code Fetch, non-burst
Figure 7-14: Burst Op Code Fetch
Figure 7-15: Back to Back Read
Figure 7-16: Back to Back Write
Figure 7-18: Burst Write
Table 7-16: SYM53C810A PCI Timings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₁</td>
<td>Shared signal input setup time</td>
<td>7</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t₂</td>
<td>Shared signal input hold time</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t₃</td>
<td>CLK to shared signal output valid</td>
<td>-</td>
<td>11</td>
<td>ns</td>
</tr>
<tr>
<td>t₄</td>
<td>Side signal input setup time</td>
<td>10</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t₅</td>
<td>Side signal input hold time</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t₆</td>
<td>CLK to side signal output valid</td>
<td>-</td>
<td>12</td>
<td>ns</td>
</tr>
<tr>
<td>t₇</td>
<td>CLK high to FETCH/ low</td>
<td>-</td>
<td>20</td>
<td>ns</td>
</tr>
<tr>
<td>t₈</td>
<td>CLK high to FETCH/ high</td>
<td>-</td>
<td>20</td>
<td>ns</td>
</tr>
<tr>
<td>t₉</td>
<td>CLK high to MASTER/ low</td>
<td>-</td>
<td>20</td>
<td>ns</td>
</tr>
<tr>
<td>t₁₀</td>
<td>CLK high to MASTER/ high</td>
<td>-</td>
<td>20</td>
<td>ns</td>
</tr>
</tbody>
</table>
SCSI Timings

Initiator
Asynchronous Send

Figure 7-19: Initiator Asynchronous Send Waveforms

Table 7-17: Initiator Asynchronous Send Timings (5 MB/s)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₁</td>
<td>SACK/ asserted from SREQ/ asserted</td>
<td>10</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t₂</td>
<td>SACK/ deasserted from SREQ/ deasserted</td>
<td>10</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t₃</td>
<td>Data setup to SACK/ asserted</td>
<td>55</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t₄</td>
<td>Data hold from SSREQ/deasserted</td>
<td>20</td>
<td>-</td>
<td>ns</td>
</tr>
</tbody>
</table>
Initiator
Asynchronous Receive

Figure 7-20: Initiator Asynchronous Receive Waveforms

Table 7-18: Initiator Asynchronous Receive Timings (5MB/s)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>SACK asserted from SREQ asserted</td>
<td>10</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t_2</td>
<td>SACK deasserted from SREQ deasserted</td>
<td>10</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t_3</td>
<td>Data setup to SREQ asserted</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t_4</td>
<td>Data hold from SACK asserted</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
</tbody>
</table>
Target
Asynchronous Send

Table 7-19: Target Asynchronous Send Timings (5 MB/s)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₁</td>
<td>SREQ/ deasserted from SACK/ asserted</td>
<td>10</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t₂</td>
<td>SREQ/ asserted from SACK/ deasserted</td>
<td>10</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t₃</td>
<td>Data setup to SREQ/ asserted</td>
<td>55</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t₄</td>
<td>Data hold from SACK/ asserted</td>
<td>20</td>
<td>-</td>
<td>ns</td>
</tr>
</tbody>
</table>
Target
Asynchronous Receive

Figure 7-22: Target Asynchronous Receive Waveforms

Table 7-20: Target Asynchronous Receive Timings (5 MB/s)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₁</td>
<td>SREQ/ deasserted from SACK/ asserted</td>
<td>10</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t₂</td>
<td>SREQ/ asserted from SACK/ deasserted</td>
<td>10</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t₃</td>
<td>Data setup to SACK/ asserted</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t₄</td>
<td>Data hold from SREQ/ deasserted</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
</tbody>
</table>
Initiator and Target Synchronous Transfers

Figure 7-23: Initiator and Target Synchronous Transfers

Table 7-21: SCSI-1 Transfers (Single-Ended, 5.0 MB/s)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>Send SREQ/ or SACK/ assertion pulse width</td>
<td>90</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t_2</td>
<td>Send SREQ/ or SACK/ deassertion pulse width</td>
<td>90</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t_3</td>
<td>Receive SREQ/ or SACK/ assertion pulse width</td>
<td>90</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t_4</td>
<td>Receive SREQ/ or SACK/ deassertion pulse width</td>
<td>90</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t_5</td>
<td>Send data setup to SREQ/ or SACK/ asserted</td>
<td>55</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t_6</td>
<td>Send data hold from SREQ/ or SACK/ asserted</td>
<td>100</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t_7</td>
<td>Receive data setup to SREQ/ or SACK/ asserted</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t_8</td>
<td>Receive data hold from SREQ/ or SACK/ asserted</td>
<td>45</td>
<td>-</td>
<td>ns</td>
</tr>
</tbody>
</table>
Table 7-22: SCSI-2 Fast Transfers (10.0 MB/s (8-bit transfers), 40 MHz clock)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₁</td>
<td>Send SREQ/ or SACK/ assertion pulse width</td>
<td>35</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t₂</td>
<td>Send SREQ/ or SACK/ deassertion pulse width</td>
<td>35</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t₁</td>
<td>Receive SREQ/ or SACK/ assertion pulse width</td>
<td>20</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t₂</td>
<td>Receive SREQ/ or SACK/ deassertion pulse width</td>
<td>20</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t₃</td>
<td>Send data setup to SREQ/ or SACK/ asserted</td>
<td>33</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t₄</td>
<td>Send data hold from SREQ/ or SACK/ asserted</td>
<td>45</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t₅</td>
<td>Receive data setup to SREQ/ or SACK/ asserted</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t₆</td>
<td>Receive data hold from SREQ/ or SACK/ asserted</td>
<td>10</td>
<td>-</td>
<td>ns</td>
</tr>
</tbody>
</table>

* Transfer period bits (bits 6-4 in the SXFER register) are set to zero and the Extra Clock cycle of Data Setup bit (bit 7 in SCNTL1) is set.

* * Analysis of system configuration is recommended due to reduced driver skew margin in differential systems.

Note: for fast SCSI, set the TolerANT Enable bit (bit 7 in STEST3).

Table 7-23: SCSI-2 Fast Transfers (10.0 MB/s (8-bit transfers), 50 MHz clock)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₁</td>
<td>Send SREQ/ or SACK/ assertion pulse width</td>
<td>35</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t₂</td>
<td>Send SREQ/ or SACK/ deassertion pulse width</td>
<td>35</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t₁</td>
<td>Receive SREQ/ or SACK/ assertion pulse width</td>
<td>20</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t₂</td>
<td>Receive SREQ/ or SACK/ deassertion pulse width</td>
<td>20</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t₃</td>
<td>Send data setup to SREQ/ or SACK/ asserted</td>
<td>33</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t₄</td>
<td>Send data hold from SREQ/ or SACK/ asserted</td>
<td>40</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t₅</td>
<td>Receive data setup to SREQ/ or SACK/ asserted</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t₆</td>
<td>Receive data hold from SREQ/ or SACK/ asserted</td>
<td>10</td>
<td>-</td>
<td>ns</td>
</tr>
</tbody>
</table>
Appendix A
Register Summary

Register 00 (80)
SCSI Control Zero (SCNTL0)
Read/Write

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>ARB1 (Arbitration mode bit 1)</td>
</tr>
<tr>
<td>6</td>
<td>ARB0 (Arbitration mode bit 0)</td>
</tr>
<tr>
<td>5</td>
<td>START (Start sequence)</td>
</tr>
<tr>
<td>4</td>
<td>WATN (Select with SATN/ on a start sequence)</td>
</tr>
<tr>
<td>3</td>
<td>EPC (Enable parity checking)</td>
</tr>
<tr>
<td>2</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>AAP (Assert SATN/ on parity error)</td>
</tr>
<tr>
<td>0</td>
<td>TRG (Target role)</td>
</tr>
</tbody>
</table>

Default: 1 1 0 0 0 0 0 0

Register 01 (81)
SCSI Control One (SCNTL1)
Read/Write

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>EXC (Extra clock cycle of data setup)</td>
</tr>
<tr>
<td>6</td>
<td>ADB (Assert SCSI data bus)</td>
</tr>
<tr>
<td>5</td>
<td>DHP (Disable Halt on Parity Error or ATN) (Target Only)</td>
</tr>
<tr>
<td>4</td>
<td>CON (Connected)</td>
</tr>
<tr>
<td>3</td>
<td>RST (Assert SCSI RST/ signal)</td>
</tr>
<tr>
<td>2</td>
<td>AESP (Assert even SCSI parity (force bad parity))</td>
</tr>
<tr>
<td>1</td>
<td>IARB (Immediate Arbitration)</td>
</tr>
<tr>
<td>0</td>
<td>SST (Start SCSI Transfer)</td>
</tr>
</tbody>
</table>

Default: 0 0 0 0 0 0 0 0

Register 02 (82)
SCSI Control Two (SCNTL2)
Read/Write

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>SDU (SCSI Disconnect Unexpected)</td>
</tr>
<tr>
<td>6</td>
<td>Reserved</td>
</tr>
<tr>
<td>5</td>
<td>Reserved</td>
</tr>
<tr>
<td>4</td>
<td>Reserved</td>
</tr>
<tr>
<td>3</td>
<td>Reserved</td>
</tr>
<tr>
<td>2</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>Reserved</td>
</tr>
<tr>
<td>0</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Default: X X X X X X X X

Register 03 (83)
SCSI Control Three (SCNTL3)
Read/Write

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Reserved</td>
</tr>
<tr>
<td>6</td>
<td>SCF2-0 (Synchronous Clock)</td>
</tr>
<tr>
<td>5</td>
<td>SCF1</td>
</tr>
<tr>
<td>4</td>
<td>SCF0</td>
</tr>
<tr>
<td>3</td>
<td>RES</td>
</tr>
<tr>
<td>2</td>
<td>CCF2</td>
</tr>
<tr>
<td>1</td>
<td>CCF1</td>
</tr>
<tr>
<td>0</td>
<td>CCF0</td>
</tr>
</tbody>
</table>

Default: X 0 0 0 0 0 0 0

Bits 6-4: SCF2-0 (Synchronous Clock)
Bits 3: Reserved
Bits 2-0: CCF2-0 (Clock Conversion Factor)
Register Summary

Register 04 (84)
SCSI Chip ID (SCID)
Read/Write

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Reserved</td>
<td>X X X X X 0 0 0</td>
</tr>
<tr>
<td>6</td>
<td>RRE (Enable Response to Reselection)</td>
<td>X X X X X 0 0 0</td>
</tr>
<tr>
<td>5</td>
<td>SRE (Enable Response to Selection)</td>
<td>X X X X X 0 0 0</td>
</tr>
<tr>
<td>4-3</td>
<td>Reserved</td>
<td>X X X X X 0 0 0</td>
</tr>
<tr>
<td>2-0</td>
<td>Encoded SYM53C810A Chip SCSI ID, bits 2-0</td>
<td>X X X X X 0 0 0</td>
</tr>
</tbody>
</table>

Register 05 (85)
SCSI Transfer (SXFER)
Read/Write

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-5</td>
<td>TP2-0 (SCSI Synchronous Transfer Period)</td>
<td>0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>4</td>
<td>Reserved</td>
<td>0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>3-0</td>
<td>MO3-MO0 (Max SCSI synchronous offset)</td>
<td>X X X X X 0 0 0</td>
</tr>
</tbody>
</table>

Register 06 (86)
SCSI Destination ID (SDID)
Read/Write

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-3</td>
<td>Reserved</td>
<td>X X X X X 0 0 0</td>
</tr>
<tr>
<td>2-0</td>
<td>Encoded destination SCSI ID</td>
<td>X X X X X 0 0 0</td>
</tr>
</tbody>
</table>

Register 07 (87)
General Purpose (GPREG)
Read/Write

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-2</td>
<td>Reserved</td>
<td>X X X X X 0 0 0</td>
</tr>
<tr>
<td>1-0</td>
<td>GPIO1-GPIO0 (General Purpose)</td>
<td>X X X X X 0 0 0</td>
</tr>
</tbody>
</table>

Register 08 (88)
SCSI First Byte Received (SFBR)
Read/Write

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-0</td>
<td>Reserved</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>
Register 09 (89)
SCSI Output Control Latch (SOCL)
Read/Write

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>REQ (Assert SCSI REQ/ signal)</td>
</tr>
<tr>
<td>6</td>
<td>ACK (Assert SCSI ACK/ signal)</td>
</tr>
<tr>
<td>5</td>
<td>BSY (Assert SCSI BSY/ signal)</td>
</tr>
<tr>
<td>4</td>
<td>SEL (Assert SCSI SEL/ signal)</td>
</tr>
<tr>
<td>3</td>
<td>ATN (Assert SCSI ATN/ signal)</td>
</tr>
<tr>
<td>2</td>
<td>MSG (Assert SCSI MSG/ signal)</td>
</tr>
<tr>
<td>1</td>
<td>C/D (Assert SCSI C_D/ signal)</td>
</tr>
<tr>
<td>0</td>
<td>I/O (Assert SCSI I_O/ signal)</td>
</tr>
</tbody>
</table>

Register 0A (8A)
SCSI Selector ID (SSID)
Read Only

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>VAL (SCSI Valid Bit)</td>
</tr>
<tr>
<td>6-3</td>
<td>Reserved</td>
</tr>
<tr>
<td>2-0</td>
<td>Encoded Destination SCSI ID</td>
</tr>
</tbody>
</table>

Register 0B (8B)
SCSI Bus Control Lines (SBCL)
Read Only

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>REQ (SREQ/ status)</td>
</tr>
<tr>
<td>6</td>
<td>ACK (SACK/ status)</td>
</tr>
<tr>
<td>5</td>
<td>BSY (SBSY/ status)</td>
</tr>
<tr>
<td>4</td>
<td>SEL (SSEL/ status)</td>
</tr>
<tr>
<td>3</td>
<td>ATN (SATN/ status)</td>
</tr>
<tr>
<td>2</td>
<td>MSG (SMG/ status)</td>
</tr>
<tr>
<td>1</td>
<td>C/D (SC_D/ status)</td>
</tr>
<tr>
<td>0</td>
<td>I/O (SI_O/ status)</td>
</tr>
</tbody>
</table>

Register 0C (8C)
DMA Status (DSTAT)
Read Only

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>DFE (DMA FIFO empty)</td>
</tr>
<tr>
<td>6</td>
<td>MDPE (Master Data Parity Error)</td>
</tr>
<tr>
<td>5</td>
<td>BF (Bus fault)</td>
</tr>
<tr>
<td>4</td>
<td>ABRT (Aborted)</td>
</tr>
<tr>
<td>3</td>
<td>SSI (Single step interrupt)</td>
</tr>
<tr>
<td>2</td>
<td>SIR (SCRIPTS interrupt instruction received)</td>
</tr>
<tr>
<td>1</td>
<td>Reserved</td>
</tr>
<tr>
<td>0</td>
<td>IID (Illegal instruction detected)</td>
</tr>
</tbody>
</table>

Register 0D (8D)
SCSI Status Zero (SSTAT0)
Read Only

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>ILF (SIDL full)</td>
</tr>
<tr>
<td>6</td>
<td>ORF (SODR full)</td>
</tr>
<tr>
<td>5</td>
<td>OLF (SODL full)</td>
</tr>
<tr>
<td>4</td>
<td>AIP (Arbitration in progress)</td>
</tr>
<tr>
<td>3</td>
<td>LOA (Lost arbitration)</td>
</tr>
<tr>
<td>2</td>
<td>WOA (Won arbitration)</td>
</tr>
<tr>
<td>1</td>
<td>RST/ (SCSI RST/ signal)</td>
</tr>
<tr>
<td>0</td>
<td>SDP/ (SCSI SDP/ parity signal)</td>
</tr>
</tbody>
</table>

Register 0E (8E)
SCSI Status One (SSTAT1)
Read Only

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>FF3-FF0 (FIFO flags)</td>
</tr>
<tr>
<td>6</td>
<td>SDPL (Latched SCSI parity)</td>
</tr>
<tr>
<td>5</td>
<td>MSG (SCSI MSG/ signal)</td>
</tr>
<tr>
<td>4</td>
<td>C/D (SCSI C_D/ signal)</td>
</tr>
<tr>
<td>3</td>
<td>I/O (SCSI I_O/ signal)</td>
</tr>
</tbody>
</table>

Register Summary

SYM53C810A Data Manual A-3
Register Summary

Register 0F (8F)
SCSI Status Two (SSTAT 2)
(Read Only)

<table>
<thead>
<tr>
<th>RES</th>
<th>RES</th>
<th>RES</th>
<th>RES</th>
<th>RES</th>
<th>RES</th>
<th>LDSC</th>
<th>RES</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Default: \[\ldots X X X X X X 1 X \]

- Bits 7-2: Reserved
- Bit 1: LDSC (Last Disconnect)
- Bit 0: Reserved

Registers 10-13 (90-93)
Data Structure Address (DSA)
Read/Write

Register 14 (94)
Interrupt Status (ISTAT)
(Read/Write)

<table>
<thead>
<tr>
<th>ABRT</th>
<th>SRST</th>
<th>SIGP</th>
<th>SEM</th>
<th>CON</th>
<th>INTF</th>
<th>SIP</th>
<th>DIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Default: \[0 0 0 0 0 0 0 0 \]

- Bit 7: ABRT (Abort operation)
- Bit 6: SRST (Software reset)
- Bit 5: SIGP (Signal process)
- Bit 4: SEM (Semaphore)
- Bit 3: CON (Connected)
- Bit 2: INTF (Interrupt on the Fly)
- Bit 1: SIP (SCSI interrupt pending)
- Bit 0: DIP (DMA interrupt pending)

Register 18 (98)
Chip Test Two (CTEST 2)
(Read Only)

<table>
<thead>
<tr>
<th>DDIR</th>
<th>SIGP</th>
<th>CIO</th>
<th>CM</th>
<th>RES</th>
<th>TEOP</th>
<th>DREQ</th>
<th>DACK</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Default: \[0 0 X X 0 0 0 1 \]

- Bit 7: DDIR (Data transfer direction)
- Bit 6: SIGP (Signal process)
- Bit 5: CIO (Configured as I/O)
- Bit 4: CM (Configured as memory)
- Bit 3: Reserved
- Bit 2: TEOP (SCSI true end of process)
- Bit 1: DREQ (Data request status)
- Bit 0: DACK (Data acknowledge status)

Register 1B (9B)
Chip Test Three (CTEST 3)
(Read/Write)

<table>
<thead>
<tr>
<th>V3</th>
<th>V2</th>
<th>V1</th>
<th>V0</th>
<th>FLF</th>
<th>CLF</th>
<th>RM</th>
<th>WRIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Default: \[X X X 0 0 0 0 0 \]

- Bits 7-4: V3-V0 (Chip revision level)
- Bit 3: FLF (Flush DMA FIFO)
- Bit 2: CLF (Clear DMA FIFO)
- Bit 1: FM (Fetch pin mode)
- Bit 0: WRIE (Write and Invalidate Enable)

Registers 1C-1F (9C-9F)
Temporary (TEMP)
Read/Write

<table>
<thead>
<tr>
<th>RES</th>
<th>BO6</th>
<th>BO5</th>
<th>BO4</th>
<th>BO3</th>
<th>BO2</th>
<th>BO1</th>
<th>BO0</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Default: \[X 0 0 0 0 0 0 0 \]

- Bit 7: Reserved
- Bits 6-0: BO6-BO0 (Byte offset counter)

Register 20 (A0)
DMA FIFO (DFIFO)
Read/Write

<table>
<thead>
<tr>
<th>RES</th>
<th>BO6</th>
<th>BO5</th>
<th>BO4</th>
<th>BO3</th>
<th>BO2</th>
<th>BO1</th>
<th>BO0</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Default: \[0 0 0 0 0 0 0 0 \]

- Bits 7: Reserved
- Bits 6-0: BO6-BO0 (Byte offset counter)

Register Summary

- **Register 0F (8F):** SCSI Status Two (SSTAT 2)
- **Register 10-13 (90-93):** Data Structure Address (DSA)
- **Register 14 (94):** Interrupt Status (ISTAT)
- **Register 18 (98):** Chip Test Two (CTEST 2)
- **Register 1B (9B):** Chip Test Three (CTEST 3)
- **Register 1C-1F (9C-9F):** Temporary (TEMP)
- **Register 20 (A0):** DMA FIFO (DFIFO)
Register Summary

Register 21 (A1)
Chip Test Four (CTEST4)
Read/Write

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bits 2-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDIS</td>
<td>ZMOD</td>
<td>ZSD</td>
<td>SRTM</td>
<td>MPEE</td>
<td>FBL2-FBL0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bits 2-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDIS</td>
<td>ZMOD</td>
<td>ZSD</td>
<td>SRTM</td>
<td>MPEE</td>
<td>FBL2-FBL0</td>
</tr>
</tbody>
</table>

Bit 7
- **BDIS (Burst Disable)**
- **ZMOD (High impedance mode)**
- **ZSD (SCSI Data High Impedence)**
- **SRTM (Shadow Register Test Mode)**
- **MPEE (Master Parity Error Enable)**
- **FBL2-FBL0 (FIFO byte control)**

Register 22 (A2)
Chip Test Five (CTEST5)
Read/Write

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bits 2-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADCK</td>
<td>BBCK</td>
<td>RES</td>
<td>MASR</td>
<td>DDIR</td>
<td>RES-RES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bits 2-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADCK</td>
<td>BBCK</td>
<td>RES</td>
<td>MASR</td>
<td>DDIR</td>
<td>RES-RES</td>
</tr>
</tbody>
</table>

Bit 7
- **ADCK (Clock address incrementor)**
- **BBCK (Clock byte counter)**
- **RES (Reserved)**
- **MASR (Master control for set or reset pulses)**
- **DDIR (DMA direction)**
- **RES-RES (Reserved)**

Register 23 (A3)
Chip Test Six (CTEST6)
Read/Write

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bits 2-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF7</td>
<td>DF6</td>
<td>DF5</td>
<td>DF4</td>
<td>DF3</td>
<td>DF2-DF0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bits 2-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF7</td>
<td>DF6</td>
<td>DF5</td>
<td>DF4</td>
<td>DF3</td>
<td>DF2-DF0</td>
</tr>
</tbody>
</table>

Bits 7-0
- **DF7-DF0 (DMA FIFO)**

Registers 28-2B (A8-AB)
DMA Next Address (DNAD)
Read/Write

Registers 2C-2F (AC-AF)
DMA SCRIPTS Pointer (DSP)
Read/Write

Registers 30-33 (B0-B3)
DMA SCRIPTS Pointer Save (DSPS)
Read/Write

Registers 34-37 (B4-B7)
Scratch Register A (SCRATCH A)
Read/Write

Register 38 (B8)
DMA Mode (DMODE)
Read/Write

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL1</td>
<td>BLO</td>
<td>SIOM</td>
<td>DIOM</td>
<td>ERL</td>
<td>ERMP</td>
<td>BOF</td>
<td>MAN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL1</td>
<td>BLO</td>
<td>SIOM</td>
<td>DIOM</td>
<td>ERL</td>
<td>ERMP</td>
<td>BOF</td>
<td>MAN</td>
</tr>
</tbody>
</table>

Bits 7-6
- **BL1-BLO (Burst length)**
- **SIOM (Source I/O-Memory Enable)**
- **DIOM (Destination I/O-Memory Enable)**
- **ERL (Enable Read Line)**
- **ERMP (Enable Read Multiple)**
- **BOF (Burst Op Code Fetch Enable)**
- **MAN (Manual Start Mode)**

Register 39 (B9)
DMA Interrupt Enable (DIEN)
Read/Write

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES</td>
<td>MDPE</td>
<td>BF</td>
<td>ABRT</td>
<td>SSI</td>
<td>SIR</td>
<td>RES</td>
<td>IID</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES</td>
<td>MDPE</td>
<td>BF</td>
<td>ABRT</td>
<td>SSI</td>
<td>SIR</td>
<td>RES</td>
<td>IID</td>
</tr>
</tbody>
</table>

Bits 7-6
- **Reserved**
- **MDPE (Master Data Parity Error)**
- **BF (Bus fault)**
- **ABRT (Aborted)**
- **SSI (Single step interrupt)**
- **SIR (SCRIPTS interrupt)**
- **RES (Reserved)**
- **IID (Illegal instruction detected)**

Register 27 (A7)
DMA Command (DCMD)
Read/Write

Register 24-26 (A4-A6)
DMA Byte Counter (DBC)
Read/Write

Register 30-33 (B0-B3)
DMA SCRIPTS Pointer Save (DSPS)
Read/Write

Register 34-37 (B4-B7)
Scratch Register A (SCRATCH A)
Read/Write

Register 38 (B8)
DMA Mode (DMODE)
Read/Write

Register 39 (B9)
DMA Interrupt Enable (DIEN)
Read/Write

Register 21 (A1)
Chip Test Four (CTEST4)
Read/Write

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bits 2-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDIS</td>
<td>ZMOD</td>
<td>ZSD</td>
<td>SRTM</td>
<td>MPEE</td>
<td>FBL2-FBL0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bits 2-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDIS</td>
<td>ZMOD</td>
<td>ZSD</td>
<td>SRTM</td>
<td>MPEE</td>
<td>FBL2-FBL0</td>
</tr>
</tbody>
</table>

Bit 7
- **BDIS (Burst Disable)**
- **ZMOD (High impedance mode)**
- **ZSD (SCSI Data High Impedence)**
- **SRTM (Shadow Register Test Mode)**
- **MPEE (Master Parity Error Enable)**
- **FBL2-FBL0 (FIFO byte control)**

Register 22 (A2)
Chip Test Five (CTEST5)
Read/Write

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bits 2-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADCK</td>
<td>BBCK</td>
<td>RES</td>
<td>MASR</td>
<td>DDIR</td>
<td>RES-RES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bits 2-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADCK</td>
<td>BBCK</td>
<td>RES</td>
<td>MASR</td>
<td>DDIR</td>
<td>RES-RES</td>
</tr>
</tbody>
</table>

Bit 7
- **ADCK (Clock address incrementor)**
- **BBCK (Clock byte counter)**
- **RES (Reserved)**
- **MASR (Master control for set or reset pulses)**
- **DDIR (DMA direction)**
- **RES-RES (Reserved)**

Register 23 (A3)
Chip Test Six (CTEST6)
Read/Write

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bits 2-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF7</td>
<td>DF6</td>
<td>DF5</td>
<td>DF4</td>
<td>DF3</td>
<td>DF2-DF0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bits 2-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF7</td>
<td>DF6</td>
<td>DF5</td>
<td>DF4</td>
<td>DF3</td>
<td>DF2-DF0</td>
</tr>
</tbody>
</table>

Bits 7-0
- **DF7-DF0 (DMA FIFO)**
Register Summary

Register 3A (BA)
Scratch Byte Register (SBR)
Read/Write

Register 3B (BB)
DMA Control (DCNTL)
Read/Write

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>CLSE (Cache Line Size Enable)</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>PFF (Pre-Fetch Flush)</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>PFEN (Pre-fetch Enable)</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>SSM (Single-step mode)</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>IRQM (IRQ Mode)</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>STD (Start DMA operation)</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>IRQD (IRQ Disable)</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>COM (53C700 compatibility)</td>
<td>0</td>
</tr>
</tbody>
</table>

Register 3C-3F (BC-BF)
Adder Sum Output (ADDER)
Read Only

Register 40 (C0)
SCSI Interrupt Enable Zero (SIEN0)
Read/Write

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>M/A (Initiator Mode; Phase Mismatch - Target Mode; SATN/Active)</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>CMP (Function Complete)</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>SEL (Selected)</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>SGE (SCSI Gross Error)</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>UDC (Unexpected Disconnect)</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>RST (SCSI RST/Received)</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>PAR (Parity Error)</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Register 41 (C1)
SCSI Interrupt Enable One (SIEN1)
Read/Write

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Reserved</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>Reserved</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>Reserved</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>Reserved</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>STO (Selection or Reselection Time-out)</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>GEN (General Purpose Timer Expired)</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>HTH (Handshake to Handshake Timer Expired)</td>
<td>0</td>
</tr>
</tbody>
</table>

Register 42 (C2)
SCSI Interrupt Status Zero (SIST0)
Read Only

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>M/A (Initiator Mode; Phase Mismatch - Target Mode; SATN/Active)</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>CMP (Function Complete)</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>SEL (Selected)</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>SGE (SCSI Gross Error)</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>UDC (Unexpected Disconnect)</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>RST (SCSI RST/Received)</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>PAR (Parity Error)</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Register 43 (C3)
SCSI Interrupt Status One (SIST1)
Read Only

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Reserved</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>Reserved</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>Reserved</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>Reserved</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>STO (Selection or Reselection Time-out)</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>GEN (General Purpose Timer Expired)</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>HTH (Handshake to Handshake Timer Expired)</td>
<td>0</td>
</tr>
</tbody>
</table>

Register 44 (C4)
SCSI Longitudinal Parity (SLPAR)
Read/Write

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Reserved</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>Reserved</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>Reserved</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>Reserved</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>STO (Selection or Reselection Time-out)</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>GEN (General Purpose Timer Expired)</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>HTH (Handshake to Handshake Timer Expired)</td>
<td>0</td>
</tr>
</tbody>
</table>
Register Summary

Register 46 (C6)
Memory Access Control (MACNTL)
Read/Write

<table>
<thead>
<tr>
<th>TYP3</th>
<th>TYP2</th>
<th>TYP1</th>
<th>TYP0</th>
<th>DWR</th>
<th>DRD</th>
<th>PSCPT</th>
<th>SCPTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Default: 00000000

<table>
<thead>
<tr>
<th>Bits 7-4</th>
<th>TYP3-0 (Chip Type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TYP3</td>
</tr>
<tr>
<td>0</td>
<td>TYP2</td>
</tr>
<tr>
<td>0</td>
<td>TYP1</td>
</tr>
<tr>
<td>0</td>
<td>TYP0</td>
</tr>
<tr>
<td>0</td>
<td>DWR</td>
</tr>
<tr>
<td>0</td>
<td>DRD</td>
</tr>
<tr>
<td>0</td>
<td>PSCPT</td>
</tr>
<tr>
<td>0</td>
<td>SCPTS</td>
</tr>
</tbody>
</table>

Register 47 (C7)
General Purpose Pin Control (GPCNTL)
Read/Write

<table>
<thead>
<tr>
<th>ME</th>
<th>FE</th>
<th>RES</th>
<th>RES</th>
<th>RES</th>
<th>RES</th>
<th>GPIO1</th>
<th>GPIO0</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Default: 00000000

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Master Enable</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ME</td>
</tr>
<tr>
<td>1</td>
<td>ME</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 6</th>
<th>Fetch Enable</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>FE</td>
</tr>
<tr>
<td>1</td>
<td>FE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 5</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>FE</td>
</tr>
<tr>
<td>1</td>
<td>FE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bits 1-0</th>
<th>GPIO1_EN– GPIO0_EN (GPIO Enable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>GPIO1_EN</td>
</tr>
<tr>
<td>1</td>
<td>GPIO0_EN</td>
</tr>
</tbody>
</table>

Register 48 (C8)
SCSI Timer Zero (STIME0)
Read/Write

<table>
<thead>
<tr>
<th>HTH</th>
<th>HTH</th>
<th>HTH</th>
<th>HTH</th>
<th>SEL</th>
<th>SEL</th>
<th>SEL</th>
<th>SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Default: 00000000

<table>
<thead>
<tr>
<th>Bits 7-4</th>
<th>HTH (Handshake-to-Handshake Timer Period)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HTH</td>
</tr>
<tr>
<td>0</td>
<td>HTH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bits 3-0</th>
<th>SEL (Selection Time-Out)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SEL</td>
</tr>
<tr>
<td>1</td>
<td>SEL</td>
</tr>
</tbody>
</table>

Register 49 (C9)
SCSI Timer One (STIME1)
Read/Write

<table>
<thead>
<tr>
<th>RES</th>
<th>RES</th>
<th>RES</th>
<th>RES</th>
<th>GEN3</th>
<th>GEN2</th>
<th>GEN1</th>
<th>GEN0</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Default: 00XX0000

<table>
<thead>
<tr>
<th>Bits 7-4</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>XX</td>
</tr>
<tr>
<td>0</td>
<td>XX</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bits 3-0</th>
<th>GEN3-0 (General Purpose Timer Period)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>GEN3-0</td>
</tr>
<tr>
<td>0</td>
<td>GEN3-0</td>
</tr>
</tbody>
</table>

Register 4A (CA)
Response ID (RESPID)
Read/Write

Register 4C (CC)
SCSI Test Zero (STEST0)
Read Only

```
<table>
<thead>
<tr>
<th>RES</th>
<th>SSAID</th>
<th>SSAID</th>
<th>SSAID</th>
<th>SLT</th>
<th>ART</th>
<th>SQZ</th>
<th>SOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Default: 00X01111

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bits 6-4</th>
<th>SSAID (SCSI Selected As ID)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>SSAID</td>
</tr>
<tr>
<td>5</td>
<td>SSAID</td>
</tr>
<tr>
<td>4</td>
<td>SSAID</td>
</tr>
</tbody>
</table>

Register 4D (CD)
SCSI Test One (STEST1)
Read/Write

```
<table>
<thead>
<tr>
<th>SCLK</th>
<th>SISO</th>
<th>RES</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Default: 00XXXXXX

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>SCLK</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SCLK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 6</th>
<th>SISO (SCSI Isolation Mode)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SISO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bits 5-0</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Register 4E (CE)
SCSI Test Two (STEST2)
Read/Write

```
<table>
<thead>
<tr>
<th>SCE</th>
<th>ROF</th>
<th>RES</th>
<th>SLB</th>
<th>SZM</th>
<th>RES</th>
<th>RES</th>
<th>EXT</th>
<th>LOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
```

Default: 00XX0000

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>SCE (SCSI Control Enable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SCE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 6</th>
<th>ROF (Reset SCSI Offset)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ROF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 5</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 4</th>
<th>SLB (SCSI Loopback Mode)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SLB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 3</th>
<th>SZM (SCSI High-Impedance Mode)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SZM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 2</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 1</th>
<th>EXT (Extend SREQ/SACK filtering)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>EXT</td>
</tr>
<tr>
<td>1</td>
<td>EXT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 0</th>
<th>LOW (SCSI Low level Mode)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>LOW</td>
</tr>
<tr>
<td>1</td>
<td>LOW</td>
</tr>
</tbody>
</table>
Register Summary

Register 4F (CF)
SCSI Test Three (STEST3)
Read/Write

<table>
<thead>
<tr>
<th>TE</th>
<th>STR</th>
<th>HSC</th>
<th>DSI</th>
<th>RES</th>
<th>TTM</th>
<th>CSF</th>
<th>STW</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Default:

0 0 0 0 X 0 0 0

Bit 7 TE (TolerANT Enable)
Bit 6 STR (SCSI FIFO Test Read)
Bit 5 HSC (Halt SCSI Clock)
Bit 4 DSI (Disable Single Initiator Response)
Bit 3 Reserved
Bit 2 TTM (Timer Test Mode)
Bit 1 CSF (Clear SCSI FIFO)
Bit 0 STW (SCSI FIFO Test Write)

Register 50 (D0)
SCSI Input Data Latch (SIDL)
Read Only

Registers 54 (D4)
SCSI Output Data Latch (SODL)
Read/Write

Registers 58 (D8)
SCSI Bus Data Lines (SBDL)
Read Only

Registers 5C-5F (DC-DF)
Scratch Register B (SCRATCHB)
(Read/Write)
Index

Numerics

3.3/5 Volt PCI interface 2-3
53C700 compatibility bit 5-35

A

AAP bit 5-6
Abort operation bit 5-20
Aborted bit 5-17, 5-33
ABRT bit 5-17, 5-20, 5-33
absolute maximum stress ratings 7-1
AC characteristics 7-9–7-10
 clock timing 7-9
 interrupt output 7-10
ACK bit 5-15, 5-16
active negation. See TolerANT
ADB bit 5-7
ADCK bit 5-27
ADDER register 5-35
Adder Sum Output register 5-35
Additional Interface Pins 4-7
Address and Data Pins 4-4
AESP bit 5-7
AIP bit 5-18
ARB1-0 bits 5-5
arbitration
 arbitration mode bits 5-5
 arbitration pins 4-5
Arbitration in progress bit 5-18
Arbitration mode bits 5-5
Arbitration Priority Encoder Test bit 5-44
ART bit 5-44
Assert even SCSI parity (force bad parity) bit 5-7
Assert SAT N / on parity error bit 5-6
Assert SCSI ACK bit 5-15
Assert SCSI AT N / bit 5-15
Assert SCSI BSY / bit 5-15
Assert SCSI C_D / bit 5-15
Assert SCSI data bus bit 5-7
Assert SCSI l_O / bit 5-15
Assert SCSI M SG / bit 5-15
Assert SCSI REQ / signal bit 5-15
Assert SCSI RST / signal bit 5-7
Assert SCSI SEL / bit 5-15
AT N bit 5-15, 5-16

B

BBCK bit 5-27
BDIS bit 5-26
benefits summary 1-3
BF bit 5-16, 5-33
bidirectional signals 7-5–??
BL 1-BL 0 bits 5-31
Block Move Instructions 6-4
BO6-BO0 bits 5-26
BOF bit 5-32
BSY bit 5-15, 5-16
Burst Disable bit 5-26
Burst length bits 5-31
Burst Mode Fetch Enable bit 5-32
Bus fault bit 5-16, 5-33
Byte empty in DMA FIFO bits 5-23
Byte full in DMA FIFO bits 5-23
Byte offset counter bits 5-26
C
C_D bit 5-15, 5-16, 5-19
Cache Line Size Enable bit 5-34, A-6
cache mode, see PCI cache mode 3-2
capacitance 7-3
CCF2-0 bits 5-10
chip block diagram 1-5
chip revision level bits 5-24
Chip Test Five register 5-27
Chip Test Four register 5-26
Chip Test One register 5-23
Chip Test Six register 5-28
Chip Test Two register 5-23
Chip Test Zero register 5-22
Chip Type bits 5-41
CIO bit 5-23
Clear SCSI FIFO bit 5-47
Clock address incrementor bit 5-27
Clock byte counter bit 5-27
Clock Conversion Factor bits 5-10
CLSE bit 5-34, A-6
CM bit 5-23
CMP bit 5-36, 5-38
COM bit 5-35
CON bit 5-7, 5-21
configuration registers. See PCI configuration registers
Configured as I/O bit 5-23
Configured as memory bit 5-23
Connected bit 5-7, 5-21
CSF bit 5-47
CTEST 0 register 5-22
CTEST 1 register 5-23
CTEST 2 register 5-23
CTEST 4 register 5-26
CTEST 5 register 5-27
CTEST 6 register 5-28
D
DACK bit 5-24
data acknowledge status bit 5-24
data path 2-7
data request status bit 5-24
data Structure Address register 5-20
data transfer direction bit 5-23
dataRD bit 5-41
DataWR bit
DWR bit 5-41
DBC register 5-28
DC characteristics 7-1
absolute maximum stress ratings 7-1
bidirectional signals 7-5
capacitance 7-3
input signals 7-3
operating conditions 7-2
output signals 7-4
SCSI signals 7-2
DCMD register 5-29
DCNTL register 5-34
DDIR bit 5-23, 5-27
Destination I/O-Memory Enable bit 5-32
determining the data transfer rate 2-11
DF7-DF0 bits 5-28
DFE bit 5-16
DFIFO register 5-26
DHP bit 5-7
DIEN register 5-33
DIOM bit 5-32
DIP bit 5-22
Disable Halt on Parity Error or ATN bit 5-7
Disable Single Initiator Response bit 5-47
DMA Byte Counter register 5-28
DMA Command register 5-29
DMA Control register 5-34
DMA core 2-1
DMA direction bit 5-27
DMA FIFO 2-6
DMA FIFO bits 5-28
DMA FIFO empty bit 5-16
DMA FIFO register 5-26
DMA Interrupt Enable register 5-33
DMA interrupt pending bit 5-22
DMA Mode register 5-31
DMA Next Address register 5-29
DMA SCRIPTS Pointer register 5-30
DMA SCRIPTS Pointer Save register 5-30
DMA Status register 5-16
DMODE register 5-31
DNAD register 5-29
DRD bit 5-41
DREQ bit 5-24
DSA register 5-20
DSI bit 5-47
DSP register 5-30
DPS register 5-30
DSTAT register 5-16

E
ease of use 1-3
Enable parity checking bit 5-6
Enable Read Line bit 5-32
Enable Read Multiple bit 5-32, A-5
Enable Response to Reselection bit 5-11
Enable Response to Selection bit 5-11
Encoded Chip SCSI ID, bits 2-0 5-11
Encoded Destination SCSI ID bits 5-15
Encoded destination SCSI ID bits 5-13
EPC bit 5-6

ERL bit 5-32
Error Reporting Pins 4-6
EXC bit 5-7
EXT bit 5-46
Extend SREQ/SACK filtering bit 5-46
Extra clock cycle of data setup bit 5-7

F
FBL2-FBL0 bits 5-27
Fetch Enable bit 5-41
fetch op code bursting 2-3
FF3-FF0 bits 5-18
FFL3-0 bits 5-23
FIFO byte control bits 5-27
FIFO flags bits 5-18
FMT 3-0 bits 5-23
Function Complete bit 5-36, 5-38

G
GEN bit 5-37, 5-40
GEN 3-0 bits 5-43
general description 1-1
General purpose bits 5-14
General Purpose Pin Control register 5-41
General Purpose register 5-14
General Purpose Timer Expired bit 5-37, 5-40
General Purpose Timer Period bits 5-43
GPCNTL register 5-41
GPIO Enable bits 5-41
GPIO1-0 bits 5-14
GPIO1EN_GPIO0EN bits 5-41
GPREG register 5-14

H
Halt SCSI Clock bit
HSC bit 5-46
Handshake to Handshake timer Expired bit 5-38
Handshake-to-Handshake Timer Expired bit 5-40
Handshake-to-Handshake Timer Period bits 5-42
High impedance mode bit 5-26
HTH bit 5-38, 5-40
I
I/O bit 5-19
I/O Instructions 6-8
I_O bit 5-15
IARB bit 5-8
IID bit 5-17, 5-33
Illegal instruction detected bit 5-17, 5-33
Immediate arbitration bit 5-8
Initiator Mode
 Phase Mismatch 5-38
input signals 7-3
instruction prefetch. See SCRIPTS instruction prefetching
instruction set 6-1–6-25
instructions
 block move 6-4
 I/O 6-8
 load and store 6-24
 memory move 6-21
 read/write 6-14
 transfer control 6-17
Interface Control Pins 4-5
Interrupt on the Fly bit 5-21
interrupt output timings 7-10
Interrupt Status register 5-20
interrupts
 fatal vs. non-fatal interrupts 2-14
 halting 2-15
 IRQ Disable bit 2-14, 5-34, A-6
 masking 2-14
 polling vs. hardware 2-13
 registers 2-13
 stacked interrupts 2-15
INTF bit 5-21
IRQ Disable bit 5-34, A-6
IRQ Mode bit 5-34
IRQD bit 5-34, A-6
IRQM bit 5-34
ISTAT register 5-20
L
Last Disconnect bit 5-19
Latched SCSI parity bit 5-18
LDSC bit 5-19
LOA bit 5-18
Load and Store instructions
 no flush option 6-24
 prefetch unit and Store instructions 2-2, 6-24
load and store instructions 6-24
Lost arbitration bit 5-18
LOW bit 5-46
M
M/A bit 5-36, 5-38
MACNTL register 5-41
MAN bit 5-32
MANual Start Mode bit 5-32
MASR bit 5-27
Master control for set or reset pulses bit 5-27
Master Data Parity Error bit 5-16
 MDPE bit 5-33
Master Enable bit 5-41
Master Parity Error Enable bit 5-27
Max SCSI Synchronous Offset bits 5-13
MDPE bit 5-16
Memory Access Control register 5-41
Memory Move Instructions 6-21
Memory Move instructions
 and SCRIPTS instruction prefetching 2-2
 No Flush option 6-23
Memory Read Line command 3-4
Memory Read Multiple command 3-4
Memory Write and Invalidate command 3-3
Write and Invalidate Mode bit 3-7
move to/from SFBR cycles 6-14
MPEE bit 5-27
MSG bit 5-15, 5-16, 5-19

N
NFMOV instruction 6-23
No Flush Memory-to-Memory Move 6-23

O
OLF bit 5-17
op code fetch bursting 2-2
operating conditions 7-2
operating registers
 Adder Sum Output 5-35
 Chip Test Five 5-27
 Chip Test Four 5-26
 Chip Test One 5-23
 Chip Test Six 5-28
 Chip Test Three 5-24
 Chip Test Two 5-23
 Chip Test Zero 5-22
 Data Structure Address 5-20
 DMA Byte Counter 5-28
 DMA Command 5-29
 DMA Control 5-34
 DMA FIFO 5-26
 DMA Interrupt Enable 5-33
 DMA Mode 5-31
 DMA Next Address 5-29
 DMA SCRIPTS Pointer 5-30
 DMA SCRIPTS Pointer Save 5-30
 DMA Status 5-16
 DMA Watchdog Timer 5-33
general information 5-1
General Purpose 5-14
General Purpose Pin Control 5-41
Interrupt Status 5-20

Memory Access Control 5-41
register address map 5-4
Response ID Zero 5-43
Scratch Register A 5-31
Scratch Register B 5-49
SCSI Bus Control Lines 5-16
SCSI Bus Data Lines 5-48
SCSI Chip ID 5-11
SCSI Control One register 5-7
SCSI Control Register Two 5-9
SCSI Control Three 5-9
SCSI Control Zero 5-5
SCSI Destination ID 5-13
SCSI First Byte Received 5-14
SCSI Input Data Latch 5-47
SCSI Interrupt Enable One 5-37
SCSI Interrupt Enable Zero 5-36
SCSI Interrupt Status One 5-40
SCSI Interrupt Status Zero 5-38
SCSI Longitudinal Parity 5-40
SCSI Output Control Latch 5-15
SCSI Output Data Latch 5-48
SCSI Selector ID 5-15
SCSI Status One 5-18
SCSI Status Two 5-19
SCSI Status Zero 5-17
SCSI Test One 5-45
SCSI Test Three 5-46
SCSI Test Two 5-45
SCSI Test Zero 5-44
SCSI Timer One 5-43
SCSI Timer Zero 5-42
SCSI Transfer 5-11
Temporary Stack 5-25

ORF bit 5-17
output signals 7-4
P
PAR bit 5-37, 5-39
Parity 2-3–2-5
 Assert even SCSI parity bit 5-7
 Assert SATN/ on parity error bit 5-6
 Disable Halt on Parity Error bit 5-7
 Enable parity checking bit 5-6
 Master Data Parity Error bit 5-33
 Master Parity Error Enable bit 5-27
 Parity Error bit 5-39
 SCSI Parity Error bit 5-37
Parity Error bit 5-39
PCI
 addressing 3-1
 bus commands and functions supported 3-1
PCI addressing 3-1
PCI bus commands and functions supported 3-1
PCI cache mode 2-3, 3-2
 Cache Line Size Enable bit 5-34, A-6
 Cache Line Size register 3-10
 Enable Read Line bit 5-32
 Enable Read Multiple bit 5-32, A-5
 Memory Read Line command 3-4
 Memory Read Multiple command 3-4
 Memory Write and Invalidate command 3-3
 Write and Invalidate Mode bit 3-7
 Write and Invalidate Enable bit 5-25, A-4
PCI commands 3-1
PCI configuration registers 3-6–3-11
 Base Address One (Memory) 3-11
 Base Address Zero (I/O) 3-11
 Cache Line Size 3-10
 Class Code 3-10
 Command 3-7
 Device ID 3-7
 Header Type 3-11
 Interrupt Line 3-11
 Interrupt Pin 3-11
Latency Timer 3-10
Max_Lat 3-11
Min_Gnt 3-11
Revision ID 3-10
Status 3-8
Vendor ID 3-7
PCI configuration space 3-1
PCI I/O space 3-1
PCI memory space 3-1
PFEN bit 5-34, A-6
PFF bit 5-34, A-6
Phase Mismatch bit 5-38
pins
 additional interface pins 4-7
 address and data pins 4-4
 arbitration pins 4-5
 error reporting pins 4-6
 interface control pins 4-5
 SCSI pins 4-6
 system pins 4-4
Pointer SCRIPTS bit
 PSCPT bit 5-41
Power and Ground Pins 4-2
Pre-fetch Enable bit 5-34, A-6
Pre-Fetch Flush bit 5-34, A-6
prefetching
prefetching. See SCRIPTS instruction
R
Read Multiple commands
 Enable Read Multiple bit 5-32, A-5
Read/Write Instructions 6-14
read-modify-write cycles 6-14
register addresses
 operating registers
 00h 5-5
 01h 5-7
02h 5-9
03h 5-9
04h 5-11
05h 5-11
06h 5-13
07h 5-14
08h 5-14
09h 5-15
0Ah 5-15
0Bh 5-16
0Ch 5-16
0Dh 5-17
0Eh 5-18
0Fh 5-19
10h-13h 5-20
14h 5-20
18 5-22
19h 5-23
1Ah 5-23
1Ch-1Fh 5-25
20h 5-26
21h 5-26
22h 5-27
23h 5-28
24h-26h 5-28
27h 5-29
28h-2Bh 5-29
2Ch-2Fh 5-30
30h-33h 5-30
34h-37h 5-31
38h 5-31
39h 5-33
3Ah 5-33
3Bh 5-34
3Ch-3Fh 5-35
40h 5-36
41h 5-37
42h 5-38
43h 5-40
44h 5-40
46h 5-41
47h 5-41
48h 5-42
49h 5-43
4Ah 5-43
4Ch 5-44
4Dh 5-45
4Eh 5-45
4Fh 5-46
50h 5-47
54h 5-48
58h 5-48
5Ch-5Fh 5-49

PCI configuration registers

00h 5-7
02h 5-7
04h 5-7
06h 5-8
08h 5-10
09h 5-10
0Ch 5-10
0Dh 5-10
0Eh 5-11
10h 5-11
14h 5-11
3Ch 5-11
3Dh 5-11
3Eh 5-11
3Fh 5-11

register bits

53C 700 compatibility 5-35
Abort operation 5-20
Aborted 5-17, 5-33
Arbitration in progress 5-18
Arbitration mode 5-5
Arbitration Priority Encoder Test 5-44
Assert even SCSI parity 5-7
Assert SATN/ on parity error 5-6
Assert SCSI ACK 5-15
Assert SCSI ATN/ 5-15
Assert SCSI BSY/ 5-15
Index

Assert SCSI C_D / 5-15
Assert SCSI data bus 5-7
Assert SCSI I_O / 5-15
Assert SCSI MSG / 5-15
Assert SCSI REQ / signal 5-15
Assert SCSI RST / signal 5-7
Assert SCSI SEL / 5-15
Burst Disable 5-26
Burst length 5-31
Burst Mode Fetch Enable 5-32
Bus fault 5-33
Byte Empty in DMA FIFO 5-23
Byte full in DMA FIFO 5-23
Byte offset counter 5-26
Cache Line Size Enable 5-34, A-6
Chip revision level 5-24
Chip Type 5-41
Clear DMA FIFO 5-24
Clear SCSI FIFO 5-47
Clock address incrementor 5-27
Clock byte counter 5-27
Clock Conversion Factor 5-10
Configured as I/O 5-23
Configured as memory 5-23
Connected 5-7, 5-21
DACK 5-24
Data transfer direction 5-23
DataRD 5-41
DataWR 5-41
Destination I/O-Memory Enable 5-32
Disable Halt on Parity Error 5-7
Disable Single Initiator Response 5-47
DMA direction 5-27
DMA FIFO 5-28
DMA FIFO empty bit 5-16
DMA interrupt pending 5-22
DREQ 5-24
Enable parity checking 5-6
Enable Read Line 5-32
Enable Read Multiple 5-32, A-5
Enable Response to Reselection 5-11
Enable Response to Selection 5-11
Encoded Chip SCSI ID, bits 2-0 5-11
Encoded destination ID 5-13
Encoded Destination SCSI ID 5-15
Encoded NCR 53C810A Chip SCSI ID, bits 2-0 5-11, A-2
Extend SREQ/SACK filtering 5-46
Extra clock cycle of data setup 5-7
Fetch Enable 5-41
Fetch pin mode 5-24
FIFO byte control 5-27
FIFO flags 5-18
Flush DMA FIFO 5-24
Function Complete 5-36, 5-38
General Purpose Timer Expired 5-37, 5-40
General Purpose Timer Period 5-43
GPIO Enable 5-41
GPIO1-GPIO0 5-14, A-2
Halt SCSI Clock 5-46
Handshake to Handshake timer Expired 5-38
Handshake-to-Handshake Timer Expired 5-40
Handshake-to-Handshake Timer Period 5-42
High impedance mode 5-26
Illegal instruction detected 5-17, 5-33
Immediate arbitration 5-8
Interrupt on the Fly 5-21
IRQ disable 5-34, A-6
IRQ Mode 5-34
Last Disconnect 5-19
Latched SCSI parity 5-18
Lost arbitration 5-18
Manual Start Mode 5-32
Master control for set or reset pulses 5-27
Master Data Parity Error 5-16, 5-33
Master Enable 5-41
Master Parity Error Enable 5-27
Max SCSI Synchronous Offset 5-13
Parity Error 5-39
Phase Mismatch or SATN/Active 5-38
Pointer SCRIPTS 5-41
Pre-Fetch Enable 5-34, A-6
Pre-Fetch Flush 5-34, A-6
Reselected 5-36, 5-39
Reset SCSI Offset 5-45
SACK/ status 5-16
SATN/ status 5-16
SBSY/ status 5-16
SC_D/ status 5-16
SCLK 5-45
SCRIPTS 5-41
SCRIPTS interrupt instruction received 5-17, 5-33
SCSI C_D/ signal 5-19
SCSI Control Enable 5-45
SCSI Data High Impedance 5-26
SCSI Disconnect Unexpected 5-9
SCSI FIFO Test Read 5-46
SCSI FIFO Test Write 5-47
SCSI Gross Error 5-36, 5-39
SCSI High-Impedance Mode 5-45
SCSI I_O/ signal 5-19
SCSI interrupt pending 5-22
SCSI Isolation 5-45, A-7
SCSI Loopback Mode 5-45
SCSI Low level Mode 5-46
SCSI MSG/ signal 5-19
SCSI Parity Error 5-37
SCSI Phase Mismatch or SCSI ATN Condition 5-36
SCSI Reset Condition 5-37
SCSI RST/ Received 5-39
SCSI RST/ signal 5-18
SCSI SDP/ signal 5-18
SCSI Selected As ID 5-44, A-7
SCSI Synchronous Offset Zero 5-44
SCSI Synchronous Offset Maximum 5-44
SCSI Synchronous Transfer Period 5-11
SCSI true end of process 5-24
SCSI Valid 5-15
Select with SATN/ on a start sequence 5-3
Selected 5-36, 5-39
Selection or Reselection Time-Out 5-37
Selection or Reselection Time-out 5-40
Selection response logic test 5-44
Selection Time-Out 5-42
Semaphore 5-21
Shadow Register Test Mode 5-26
SI_O/ status 5-16
SIDL full 5-17
Signal process 5-21, 5-23
Single step interrupt 5-17, 5-33
Single-step mode 5-34
SM SG/ status 5-16
SODL full 5-17
SODR full 5-17
Software reset 5-20
Source I/O-Memory Enable 5-31
SREQ/ status 5-16
SESL/ status 5-16
Start DMA operation 5-34
Start SCSI transfer 5-8
Start sequence 5-5
Synchronous Clock Conversion Factor bits 5-9
Target mode 5-6
Unexpected Disconnect 5-36, 5-39
WATN 5-6
Won arbitration 5-18
Write and Invalidate Enable 5-25, A-4

Registers
 see operating registers

reliability 1-4
REQ bit 5-15, 5-16
reselect
during reselection 2-9
response to 2-9
Reselected bit 5-36, 5-39
Reset SCSI Offset bit 5-45
RESPID0 register 5-43
Response ID Zero register 5-43
revision level bits 5-24
ROF bit 5-45
RRE bit 5-11
RSL bit 5-36, 5-39
RST bit 5-7, 5-37, 5-39
RST / bit 5-18
S
SACK/ status bit 5-16
SATN/ active bit 5-38
SATN/ status bit 5-16
SBCL register 5-16
SBDL register 5-48
SBR register 5-33
SBSY/ status bit 5-16
SC_D/ status bit 5-16
SCE bit 5-45
SCF2-0 bits 5-9
SCID register 5-11
SCLK bit 5-45
SCNTL0 register 5-5
SCNTL1 register 5-7
SCNTL2 register 5-9
SCNTL3 register 5-9
SCPTS bit 5-41
Scratch Byte register 5-33
SCRATCHA register 5-31
SCRATCHB register 5-49
SCRIPTS
sample operation 6-2
SCRIPTS bit 5-41
SCRIPTS instruction prefetching
No Flush Memory Move instruction 6-23
Pre-fetch Enable bit 5-34, A-6
Pre-Fetch Fl ush bit 5-34, A-6
SCRIPTS interrupt instruction received bit 5-17, 5-33
SCRIPTS processor 2-1
performance 2-1
SCSI
pins 4-6
termination 2-9
SCSI ATN Condition - Target Mode 5-36
SCSI Bus Control Lines register 5-16
SCSI Bus Data Lines register 5-48
SCSI bus interface 2-9
SCSI C_D/ signal 5-19
SCSI Chip ID register 5-11
SCSI clock rates 5-10
SCSI Control Enable bit 5-45
SCSI Control One register 5-7
SCSI Control Three register 5-9
SCSI Control Two register 5-9
SCSI Control Zero register 5-5
SCSI core 2-1
SCSI Data High Impedance bit 5-26
SCSI Destination ID register 5-13
SCSI Device Management System (SDMS) 2-2
SCSI Disconnect Unexpected bit 5-9
SCSI FIFO Test Read bit 5-46
SCSI FIFO Test Write bit 5-47
SCSI First Byte Received register 5-14
SCSI Gross Error bit 5-36, 5-39
SCSI High-Impedance Mode bit 5-45
SCSI I_O/ bit 5-19
SCSI Input Data Latch register 5-47
SCSI instructions
 block move 6-4
 I/O 6-8
 load/store 6-24
 memory move 6-21
 read/write 6-14
SCSI Interrupt Enable One register 5-37
SCSI Interrupt Enable Zero register 5-36
SCSI interrupt pending bit 5-22
SCSI Interrupt Status One register 5-40
SCSI Interrupt Status Zero register 5-38
SCSI Isolation bit 5-45, A-7
SCSI Longitudinal Parity register 5-40
SCSI Loopback Mode bit 5-45
SCSI Low level Mode 5-46
SCSI MSG/ bit 5-18
SCSI Selected As ID bits 5-44, A-7
SCSI Selector ID register 5-15
SCSI signals 7-2
SCSI Status One register 5-18
SCSI Status Two register 5-19
SCSI Status Zero register 5-17
SCSI Synchronous Offset Maximum bit 5-44
SCSI Synchronous Offset Zero bit 5-44
SCSI Synchronous Transfer Period bits 5-11
SCSI Test One register 5-45
SCSI Test Three register 5-46
SCSI Test Two register 5-45
SCSI Test Zero register 5-44
SCSI Timer One register 5-43
SCSI Timer Zero register 5-42
SCSI timings 7-23–7-28
SCSI Transfer register 5-11
SCSI true end of process bit 5-24
SCSI Valid Bit 5-15
SD ID register 5-13
SDP/ bit 5-18
SDPL bit 5-18
SDU bit 5-9
SEL bit 5-15, 5-16, 5-36, 5-39
SEL bits 5-42
Select with SATN/ on a start sequence bit 5-6
Selected bit 5-36, 5-39
selection
during reselection 2-9
during selection 2-9
response to 2-9
Selection or Reselection Time-out bit 5-37
STO bit 5-40
Selection response logic test bit 5-44
Selection Time-Out bits 5-42
SEM bit 5-21
Semaphore bit 5-21
SFBR register 5-14
SGE bit 5-36, 5-39
Shadow Register Test Mode bit 5-26
SI_O bit 5-16
SI_O/ status bit 5-16
SIDL bit 5-17
SIDL least significant byte full bit 5-17
SIDL register 5-47
SIEN0 register 5-36
INDEX

INDEX

I-12 SYM53C810A Data Manual

SIE N1 register 5-37
Signal process bit 5-21, 5-23
SIG P bit 5-21, 5-23
Single step interrupt bit 5-17, 5-33
single-ended operation 2-9
Single-step mode bit 5-34
SIOM bit 5-31
SIP bit 5-22
SIR bit 5-17, 5-33
SISO bit 5-45, A-7
SIST0 register 5-38
SIST1 register 5-40
SL B bit 5-45
SLPAR register 5-40
SLT bit 5-44
SM SG/ status bit 5-16
SOC L register 5-15
SOD L/ least significant byte full bit 5-17
SOD L register 5-48
SOD R/ least significant byte full bit 5-17
Software reset bit 5-20
SOM bit 5-44
Source I/O Memory Enable bit 5-31
SOZ bit 5-44
SRE bit 5-11
SREQ/ status bit 5-16
SRST bit 5-20
SRT M bit 5-26
SSAID bits 5-44, A-7
SSEL/ status bit 5-16
SSI bit 5-17, 5-33
SSID register 5-15
SSM bit 5-34
SST bit 5-8
SST AT0 register 5-17
SST AT1 register 5-18
SST AT 2 register 5-19
stacked interrupts 2-15
START bit 5-5
Start DMA operation bit 5-34
Start SCSI Transfer bit 5-8
Start sequence bit 5-5
STD bit 5-34
STEST0 register 5-44
STEST1 register 5-45
STEST2 register 5-45
STEST3 register 5-46
STIME0 register 5-42
STIME1 register 5-43
STO bit 5-37
STR bit 5-46
ST W bit 5-47
SXFER register 5-11
SYM53C810A
 ease of use 1-3
 flexibility 1-4
 integration 1-3
 performance 1-3
 reliability 1-4
 testability 1-4
SYMTolerANT Technology
 electrical characteristics 7-6
Synchronous Clock Conversion Factor bits 5-9
synchronous data transfer rate 2-11
synchronous operation 2-11
system diagram 1-5
System Pins 4-4
SZM bit 5-45
T
 Target Mode
 SATN/ Active 5-38
 Target mode bit 5-6
TE bit 5-46
TEMP register 5-25
Temporary register 5-25
TEOP bit 5-24
termination 2-9
testability 1-4
Timer Test Mode bit 5-47
timing diagrams 7-11–7-27
interrupt output 7-10
PCI interface 7-22
SCSI 7-28
SCSI timings 7-23
timings
 clock 7-9
 PCI 7-22
 reset input 7-10
 SCSI 7-23
TolerANT 1-2
 Extend SREQ/SACK filtering bit 5-46
 TolerANT Enable bit 5-46
TolerANT Enable bit 5-46
TP2-0 bits 5-11
transfer control instructions 6-17
 prefetch unit flushing 2-2
transfer rate 1-3
 Clock conversion factor bits 5-10
 synchronous 2-11
 Synchronous clock conversion factor bits 5-9
TRG bit 5-6
TTM bit 5-47
TYP3-0 bits 5-41
U
UDC bit 5-36, 5-39
Unexpected Disconnect bit 5-36, 5-39
V
VAL bit 5-15

W
WATN bit 5-6
what is covered in this manual 1-1
WOA bit 5-18
Won arbitration bit 5-18
Write and Invalidate command
 Write and Invalidate Enable bit 5-25, A-4
Z
ZMOD bit 5-26
ZSD bit 5-26
Symbios Logic
Sales Locations

For literature on any Symbios Logic product or service, call our hotline toll-free 1-800-856-3093

North American Sales Locations

Western Sales Area
1731 Technology Drive, Suite 610
San Jose, CA 95110
(408) 441-1080

3300 Irvine Avenue, Suite 255
Newport Beach, CA 92660
(714) 474-7095

Eastern Sales Area
8000 Townline Avenue, Suite 209
Bloomington, MN 55438-1000
(612) 941-7075

12377 Merit Dr.
Dallas, TX 75251
(972) 503-3205

92 Montvale Avenue, Suite 3500
Stoneham, MA 02180-3623
(617) 438-0043

30 Mansell Court, Suite 220
Roswell, GA 30076
(404) 641-8001

International Sales Locations

European Sales Headquarters
Westendstrasse 193/III
80686 Muenchen
Germany
011-49-89-547470-0

Asia/Pacific Sales Headquarters
37th Floor, Room 3702, Lippo Tower
Lippo Centre, 89 Queensway
Hong Kong
011-852-253-00727