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ABSTRACT

Integral representations are considered of solutions of the Airy di�erential equation w00
� z w = 0 for

computing Airy functions for complex values of z. In a �rst method contour integral representations of the

Airy functions are written as non-oscillating integrals for obtaining stable representations, which are evaluated

by the trapezoidal rule. In a second method an integral representation is evaluated by using generalized Gauss-

Laguerre quadrature; this approach provides a fast method for computing Airy functions to a predetermined

accuracy. Comparisons are made with well-known algorithms of Amos, designed for computing Bessel functions

of complex argument. Several discrepancies with Amos' code are detected, and it is pointed out for which

regions of the complex plane Amos' code is less accurate than the quadrature algorithms. Hints are given in

order to build reliable software for complex Airy functions.
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1. Introduction

Airy functions are solutions of the di�erential equation

d2w

d z2
� z w = 0: (1.1)

Two linearly independent solutions that are real for real values of z are denoted by Ai(z) and
Bi(z). They have the integral representation

Ai(z) = 1
�

Z 1

0
cos

�
zt+ 1

3 t
3
�
dt;

Bi(z) = 1
�

Z 1

0
sin

�
zt+ 1

3 t
3
�
dt+

1

�

Z 1

0
ezt�

1
3
t3 dt;

(1.2)
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where we assume that z is real. See [1, 10] or [12].
The Airy function has applications in physics (quantum mechanics, scattering problems)

and in asymptotics, where it is a main approximant in uniform expansions for solutions of
di�erential equations with turning points, or for integrals with coalescing saddle points.
In this paper we are concerned with the numerical evaluation of Ai(z) and Ai0(z) for

complex values of z by numerical quadrature. It is convenient to introduce, as in [10], the
functions

Ai0(z) = Ai(z); Ai1(z) = Ai
�
e�2�i=3z

�
; Ai�1(z) = Ai

�
e2�i=3z

�
: (1.3)

We have the representations

Aij(z) =
e2j�i=3

2�i

Z
C
�j

e�zt+
1
3
t3 dt; j = 0;�1; (1.4)

where the contours Cj are given in Figure 1. As a consequence, becauseZ
C0[C1[C�1

e�zt+
1
3
t3 dt = 0;

C1
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C−1

S

S

S0

1

−1
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Figure 1. Three contours of integration Cj for the Airy integrals in (1.4), and sectors Sj where Aij(z)

are recessive.

we have the following linear combination of three solutions of (1.1):

Ai(z) + e�2�i=3Ai1(z) + e2�i=3Ai�1(z) = 0: (1.5)

The �rst integral in (1.2) follows from deforming the contour C0 in (1.4) into the imaginary
axis. The function Bi(z) can be written as

Bi(z) = e�i=6Ai�1(z) + e��i=6Ai1(z) (1.6)

and the second representation in (1.2) follows by deforming contour C1 into the positive
imaginary axis and (�1; 0], and the contour C�1 into (�1; 0] and the negative imaginary
axis. We also have

Bi(z) = �iAi(z) + 2e��i=6Ai�1(z): (1.7)
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The function Aij(z) is recessive at in�nity in the sector Sj; j = 0;�1, the function being
exponentially small at in�nity along the diagonal of this sector. On the other hand, Aij(z)
is dominant at in�nity in the sectors Sj�1 and Sj+1 (the suÆx j is enumerated modulo 3),
and is exponentially large at in�nity along the diagonals of these sectors. Bi(z) is dominant
at in�nity within all three sectors Sj. A pair of Airy functions comprises a numerically
satisfactory pair at in�nity within a sector if only one function is dominant. For example,
the pair fAi(z);Bi(z)g comprises such a pair only in S0 (and on the negative real axis, where
none of the two is dominant, but where the phases in their oscillations di�er by 1

2�).

1.1 Existing algorithms

For an overview of software for the Airy functions we refer to [8]. See also the Guide to
Available Mathematical Software at the web site URL http://math.nist.gov/gams/ . The
main contributions are [2] (where the Airy functions follow from algorithms for the Bessel
functions) and [11], where integral representations of Stieltjes type and generalized Gauss
quadrature with tabulated weights and abscissae were used. In [3] Taylor series and asymp-
totic expansions are used; in a second method, a grid of points in the complex plane is used
where the functions are known to high precision, and Taylor series are then used from these
base points.
Interactive systems like Maple and Mathematica also include algorithms for complex Airy

functions.

2. Principal domain for computation

For the numerical evaluation of Ai(z) we concentrate on the principal sector

S =

�
z
��ph z 2 ��2

3
�;

2

3
�

��
: (2.1)

When =z < 0 we use complex conjugation, because of

Ai(x� iy) = Ai(x+ iy):

If
ph z 2 �23�; �� or ph z 2 ���;�2

3�
�
; that is, z 62 S;

ze�2�i=3 are both inside S, and we can use (see (1.5))

Ai(z) = �e�2�i=3Ai
�
e�2�i=3 z

�
� e2�i=3Ai

�
e2�i=3 z

�
: (2.2)

At most one of the Airy functions at the right-hand side is dominant if z 62 S.

3. Steepest descent contours

For details on the saddle point method and steepest descent contours we refer to [10] or [13].
We consider

Ai(z) =

Z
C0

e
1
3
w3�zw dw; (3.1)
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where ph z 2 [0; 23�] and C0 is the contour shown in Figure 1. Let

�(w) = 1
3w

3 � zw: (3.2)

The saddle points are w0 =
p
z and w = �w0 and follow from solving �0(w) = w2 � z = 0.

The path of steepest descent through the saddle point w0 is de�ned by

=[�(w)] = =[�(w0)]: (3.3)

We write

z = x+ iy = rei�; w = u+ iv; w0 = u0 + iv0: (3.4)

Then

u0 =
p
r cos 1

2�; v0 =
p
r sin 1

2�; x = u20 � v20; y = 2u0v0: (3.5)

We have

 r(�; �) = <[�(w)� �(w0)] = u0(�
2 � �2)� 2v0�� +

1
3�

3 � ��2; (3.6)

 i(�; �) = =[�(w)� �(w0)] = v0(�
2 � �2) + 2u0�� � 1

3�
3 + �2�; (3.7)

where

� = u� u0; � = v � v0: (3.8)

The path of steepest descent through w0 is given by the equation

u = u0 +
(v � v0)(v + 2v0)

3

�
u0 +

q
1
3(v

2 + 2v0v + 3u20)

� ; �1 < v <1: (3.9)

Examples for r = 5 and a few ��values are shown in Figure 2. The saddle points are
located on the circle with radius

p
r and are indicated by small dots. The saddle point on the

positive axis is for the case � = 0 and the two saddles on the imaginary axis are for � = �.
This is out of the range of present interest, but it is instructive to see that for �z 2 S0 the
contour splits up and runs through both saddle points �w0. For � = 2

3� one part of the

contour is given by the half line v =
p
3u and the other part (through �w0) by

u = u0 � (v � v0)(v + 2v0)p
3 v

; v < �v0: (3.10)

We see that when z crosses the line ph z = 2
3� the saddle point �w0 becomes important.

This aspect is connected with the Stokes phenomenon in asymptotics, and the half-line ph z =
2
3� is a Stokes line for Ai(z), just as the half-lines ph z = �2

3� and ph z = 0. Observe that the
values of exp(<�(w)) (see (3.2)) at w = �w0, which are dominant terms in the asymptotic
representations of the Airy functions, are given by

e�
2
3
r3=2 cos 3

2
�; e

2
3
r3=2 cos 3

2
�;
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respectively, and one of these dominates the other one optimally at the Stokes lines.

u

v
5.0

5.0

−5.0

−5.0

Figure 2. Saddle point contours for r = 5 and � = 0; 13�;
2
3
�; �.

4. Integrating along the saddle point contours

We use numerical quadrature for the integral (3.1), considering a contour through the saddle
point w0. The relation in (3.9) gives the description of the steepest descent path on which
=�(w) is constant. This path is optimal from the viewpoint of numerical instabilities because
the integrand is free of oscillations on this contour.
Integrating with respect to � we obtain

Ai(z) =
e��

2�i

Z 1

�1

e r(�;�)
�
d�

d�
+ i

�
d�; (4.1)

Ai0(z) = �e
��

2�i

Z 1

�1

e r(�;�)[(u0 + � + i(v0 + �)]

�
d�

d�
+ i

�
d�; (4.2)

where � = 2
3z

3
2 and  r is given by (3.6); the relation between � and � is (see 3.9):

� =
�(� + 3v0)

3
h
u0 +

q
1
3(�

2 + 4v0� + 3r)
i ; �1 < � <1: (4.3)

From this relation we can obtain d�=d� , but we can also use (3.7) to obtain

d�

d�
= �@ i=@�

@ i=d�
=
�2 � �2 � 2u0� + 2v0�

2(v0� + u0� + ��)
: (4.4)

For � and � satisfying (4.3) we know that  i(�; �) = 0. Notice, besides, that at the saddle
point @ i=@� = @ i=@� = 0 by the Cauchy-Riemann equations and then d�=d� , as expressed
in (4.4), is not suitable for numerical computation. However, it is a simple matter to avoid
cancellations by �rst dividing both the numerator and the denominator by � . This is a general
feature when applying the saddle point method for numerical computations: the resulting
integrals must be expressed in coordinates relative to the saddle point both to extract the
dominant contribution and to avoid cancellations in the Jacobian.
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The relation in (4.4) between � and � becomes non-smooth at � = 2
3�. As can be seen from

the steepest descent path in Figure 2, the quantity d�=d� becomes bi-valued at the saddle
point �w0. This aspect will have in
uence on the eÆciency when using a quadrature rule
of values of � close to 2

3�, because of singularities near the path of integration in (4.1) and
(4.2).
These singularities follow from the zeros of the square root in (4.3). We �nd that the zeros

are

�� = �2v0 � i
p
r
q
3� 4 sin2 1

2�; 0 � � � 2
3�: (4.5)

We see that the singularities indeed approach the real axis when � ! 2
3�.

5. Modifying the saddle point contours

For values of � close to 2
3� we replace the steepest descent path de�ned in (3.9) by a path

that

1) remains smooth if � ! 2
3�;

2) passes the saddle point w0;

3) the direction at the saddle point is as for the steepest descent contour, namely (d�=d�)�=0;�=0 =
tan 1

4�;

4) runs into the valleys of e�(w) at ph w = �1
3�.

A simple choice of such a path is constructed by putting

u = �+ �v +
q

1
3v

2 + 
; (5.1)

where �; �; 
 are determined by the above four conditions. From 2) and 3) we obtain

u0 = �+ �v0 +
q

1
3v

2
0 + 
; tan 1

4� = � +
v0

3
q

1
3v

2
0 + 


:

To satisfy 4) we take � small enough, and a convenient choice is

� = 1
3 tan

1
4�:

This gives
� = �5

3

p
r sin2 1

4�; 
 = 1
3r cos

2 1
4�

�
3� 7 sin2 1

4�
�
:
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In Figure 3 we draw exact steepest descent contours and approximate contours based on
(5.1) for r = 5 and � = 1

2�, � =
2
3�.

u

v

5.0 5.0

−5.0

u

v5.0 5.0

−5.0

Figure 3. Steepest descent contours given by (3.9) and approximate contours based on (5.1) for r = 5

and � = 1
2� (left) and � = 2

3�.

For the modi�ed contour the singularities occur when the square root in (5.1) is zero. We
�nd

�a� = �v0 � i
p
r cos 1

4�
q
3� 7 sin2 1

4�: (5.2)

and the imaginary part is now bounded away from zero when jph zj � 2
3�.

In the numerical algorithm we use the modi�ed contour de�ned in (5.1) for 1
2� < � � 2

3�
and the exact steepest descent path for 0 � � � �=2.
When r tends to zero again singularities arise: the singularities in (4.5) and (5.2) approach

the origin if r ! 0. These singularities are of no concern, because eÆcient methods of
computation for small r can be based on the Maclaurin expansions of the Airy function and
its derivative.

τ

1.0 1.0

τ
−3.0−3.0 1.0

Figure 4. Graphs of e r(�;�) cos i(�; �) (dashed) and e
 r(�;�) sin i(�; �) for the modi�ed contours, with

r = 1 and � = 1
2� (left) and � = 2

3�.

In any case, we can de�ne a contour for small values of r by writing, for example,

u = u0 +
q

1
3v

2 + 1�
q

1
3v

2
0 + 1;

and use this as an alternative for r � 1. For these values no instabilities arise and the
contributions from a neighborhood of the saddle point are less dominant. In this way we can
use numerical quadrature for all complex values of z.
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In Figure 4 we show the graphs of e r(�;�) cos i(�; �) and e
 r(�;�) sin i(�; �) for the mod-

i�ed contours. Observe that now  i(�; �) is not identically zero, as for the case of the exact
steepest descent contour. For r = 1 we see little oscillations in e r(�;�) sin i(�; �).
The trapezoidal rule is used to compute these integrals, being the accuracy of the computa-

tion determined by the step size and the truncation of the series approximating the integral.
Given that the integrals considered all converge very fast at in�nity ( r(�; �) � �cj� j3 as
� ! �1 with c > 0), convergence of the series is of no concern. Besides, given that the
functions under the integration are analytic in a strip along the real axis and decaying expo-
nentially at in�nity, the error due to the step size is exponentially decreasing with decreasing
h; see [9].
The method based on steepest descent contours and modi�ed contours can be used to

compute scaled complex Airy functions e�Ai, e�Ai0 to any desired accuracy. The accuracy
of the trapezoidal rule for computing these integrals can be easily adjusted by modifying the
step size.

6. Gauss-Laguerre quadrature.

The method we now describe, based on Gauss quadrature, can be used for the fast compu-
tation of Airy functions to a predetermined accuracy. This method is to be used for a �xed
precision, determined by the order of the Gauss quadrature.
The approach stems from the relation between Airy functions and modi�ed Bessel func-

tions:

Ai(z) = 1
�

r
z

3
K 1

3
(�) ; Ai0(z) = � z

�
p
3
K2=3(�) ; (6.1)

where � = 2
3z

3=2, and the integral representation ([1], Eq. 9.6.23)

K�(z) =

p
�

2��(� + 1=2)

e�zp
z

Z 1

0

�
2 +

t

z

���1=2
t��1=2e�tdt; (6.2)

which can be adequately computed with the generalized Gauss-Laguerre quadrature rule.
Gautschi [4] considered this integral representation for the computation of Ai(x) for real
x > 1.
We have for z 6= 0; jph�j < �:

Ai(z) = a(z)

Z 1

0

�
2 +

t

�

�� 1
6

t�
1
6 e�tdt ; a(z) = 1p

�(48)1=6�(5=6)
e����1=6 ;

Ai0(z) = b(z)

Z 1

0

�
2 +

t

�

� 1
6

t
1
6 e�tdt ; b(z) = � zp

3�22=3�(7=6)
e��p
�
;

(6.3)

which can be computed by using Gauss-Laguerre quadrature with parameters � = �1=6 and
� = 1=6 respectively, at least on the positive real axis and not too small x. According the
Gautschi [4] a 36-point Gauss suÆces to compute Ai(x), x > 1, to double precision accuracy.
However, for computing Airy functions in the complex plane it turns out that 36 points is
not enough. Instead, we will take 40 points.
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An additional problem is the presence of singularities in the integrands in the complex
plane. When extending the integrals to the complex plane the computation becomes unstable
as z approaches the boundary of the principal sector S, that is the the Stokes line at � = 2�=3.
The reason is the presence of singularities in the integrand at t = �2�, which become real as
� ! 2�=3. This problem can be circumvented by turning the path of integration over a given
angle � . This can be done by the substitution t! t(1 + i tan �) in (6.3), and we arrive at

Ai(z) = a(z)

�
ei�
cos �

�5=6 Z 1

0

�
2 +

t
~�

�� 1
6

e�it tan(�)t�
1
6 e�tdt ;

Ai0(z) = b(z)

�
ei�
cos �

�7=6 Z 1

0

�
2 +

t
~�

� 1
6

e�it tan(�)t
1
6 e�tdt ;

(6.4)

where ~� = cos �e�i��. A convenient choice of � is � = 3(� � �=2)=2. At � = �=2 the
expressions (6.3) and (6.4) coincide and for �=2 < � � 2�=3 the new integrands are free of
singularities.
As a result, we can safely use the integrals (6.3) for 0 � � � �=2 and these in (6.4) for �=2 <

� � 2�=3, both cases for not too small jzj. Of course, as z becomes large the singularities
have less in
uence, and the Gauss-Laguerre quadrature (with parameters � = �1=6) tends
to work better. In any case, small values of jzj are of no concern, because then the Airy
functions can be accurately computed from power series.

7. Numerical verification of the algorithms

The method based on steepest descent paths and modi�ed paths described in Sections 3, 4 and
5, being of adjustable accuracy, can be used as a test-bench in order to set the parameters of
Gauss-Laguerre integration (Section 6), namely how many Gauss points should be considered,
how many of these points are relevant for the computation to a given accuracy and where
are the regions where alternative methods should be considered.
The use of power series for small jzj should be considered as complement to the Gauss-

Laguerre quadrature. The number of required Gauss points tends to increase with decreasing
jzj; therefore, using series for small jzj gives us the chance of using less Gauss points in the
rest of the complex plane; a compromise has to be found between the number of Gauss points
and the rate of convergence of series. On the other hand, when jzj becomes large, asymptotic
expansions ([1], 10.4.59) will be faster than any other method. Simple error bounds are
available for the remainders (see [10], pp. 394, 269).
We test the accuracy of the modulus and phase of Airy functions for these di�erent methods

of computation, both for scaled (e�Ai, e�Ai0) and unscaled functions. In order to reduce
over
ow problems, we check the accuracy in the computation of Mo(z) � j<(Ai(z))j +
j=(Ai(z))j and of Ra(z) � min(<(Ai(z))==(Ai(z));=(Ai(z))=<(Ai(z))) (and similarly for the
derivative and the scaled functions). We should demand that Mo(z) maintains its accuracy
throughout the complex plane except in the close vicinity of the zeros of Ai(z), where relative
errors loose their meaning; as for Ra(z), we can expect that some accuracy is lost near the
level curves <(Ai) = 0 and =(Ai) = 0.
We next explore the regions of application of series, Gauss quadrature and asymptotic

expansions for building an algorithm aimed at a precision of 10�13. In order to perform these
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tests, it is more convenient to consider scaled Airy functions rather than unscaled ones. The
reason for this is twofold: �rst, the scaled Airy functions do not over
ow/under
ow for large
jzj; second, it is easier to achieve higher accuracy when evaluating scaled functions, given that
the factor exp(�) (with � = 2

3z
3=2) is not needed. This factor introduces loss of precision, as

can be easily understood given that

e� = exp(r0 cos�)[cos(r0 sin�) + i sin(r0 sin�)]

with r0 =
2
3 jzj3=2 and � = 2

3phz. Then, as r0 becomes large the arguments are large and will
cause severe absolute errors in the values of cos(r0 sin�) and sin(r0 sin�), and large relative
errors in exp(r0 cos�). This type of loss of precision in these elementary functions can be
expected both in the modulus and in the phase.

It is important to note that the scaled functions fAi(z) = e�Ai(z) and fAi0(z) = e�Ai0(z)
present a discontinuity cut at <z < 0 and consequently the connection formulas (1.5) for
2�=3 < ph z � � must be substituted by

fAi(z) = �e�2�i=3e 4
3
z3=2fAi(ze�2�i=3)� e2�i=3fAi(ze2�i=3) (7.1)

and similarly for the derivative.

Let us �rst check the possible range of application of Maclaurin series for fAi(z) and fAi0(z)
([1], 10.4.2) by comparing them with the saddle point methods here described. We see (Figure
5A) that loss of precision takes place for x > 2 and then we should consider Gauss-Laguerre
quadrature for such values. This fact sets limits on the number of Gauss points that are
needed. Notice that for =(z) < 0 the region where series are accurate is considerably wider.
However, as jzj increases more terms are needed and quadrature will be more eÆcient.
A 40-points Gauss-Laguerre is suÆcient to cover the region where series fail. Of these 40

points only the �rst 25 are relevant and we can drop the rest. The resulting 10�13-precision
test, by comparing with saddle point integrals, is shown in Figure 5B. We observe that the
region where the Gauss-Laguerre method is inaccurate is safely covered by Maclaurin series.
Finally, when asymptotic expansions ([1], 10.4.59) succeed in producing accurate values,

we should use them. Figure 5C shows the region where asymptotic series fail to produce
results with a precision of 10�13.

All these results apply equally for fAi(z) and fAi0(z)
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0
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Y

C
Figure 5. Points where Maclaurin series (A), Gauss-Laguerre method (B) and asymptotic expansions

(C) fail to produce results with an accuracy of 10�13. These methods are compared with the stable saddle
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point integral representations, using as test function j<(fAi)j + j=(fAi)j (the comparison for j=(fAi)j=j<( ~Ai)j

yields similar results).

An algorithm to eÆciently compute complex Airy functions to a �xed precision (better
than 10�13) could therefore be based on:

1. Maclaurin series for moderate jzj; for instance: �3 � x � 1:5, �3 � y � 3 (z = x+ iy).

2. Asymptotic expansions for large jzj (jzj � 15 is a sound choice).

3. Gauss-Laguerre quadrature for intermediate values of jzj; we recommend 40-point
Gauss-Laguerre quadrature outside the power series region with jzj < 15.

With this we can build a fast code for a �xed precision of 10�13 for the computation of
scaled Airy functions. For unscaled Airy functions, as commented before, it is much more
diÆcult to attain a uniform accuracy in all the complex plane and some loss of accuracy is
expected as jzj increases, as shown in Figure 6. In Figure 6 we show the comparison between
the combined algorithm and the saddle point integrals. Some loss of precision takes place as
jzj increases and none of the methods is responsible for these inaccuracies; as before discussed,
the dominant contribution e�� is the source of error.
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Figure 6. Comparison between the combined methods (series, Gaussian integration and asymptotic

expansions) and the saddle point integrals. The function j<(Ai)j+ j=(Ai)j is tested for an accuracy of 10�13.

The points of discrepancy between both approaches are found. In the darker shaded regions the Airy function

over
ows.

7.1 Comparison with Amos' code

We have also tested the quadrature methods against the code developed by Amos [2], which
also has the option of computing scaled Airy function. This algorithm is based on the
evaluation of complex modi�ed Bessel functions (6.1). The principal sector for computation
of the modi�ed Bessel functions in Amos' code is <(�) > 0, while for <(�) < 0 continuation
formulas involving the K and I Bessel function are considered ([1], 9.6.30).
These tests show that our Gauss-Laguerre method is generally faster and that it is more

accurate near the anti-Stokes lines and close to the positive real axis when 1 < z < 2.
In these regions Amos code fails to provide 10�13 precision. We observe these discrepancies
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both when comparing with the saddle point integrals and the combined algorithm with Gauss-
Laguerre quadrature, while there is perfect match (10�13 precision) between both quadrature
algorithms. Discrepancies persist for an accuracy of 10�12, particularly near the anti-Stokes
lines.
More details will be given in a forthcoming paper [6].
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