1 |
/* |
2 |
* CIA_SC.cpp - Single-cycle 6526 emulation |
3 |
* |
4 |
* Frodo Copyright (C) Christian Bauer |
5 |
* |
6 |
* This program is free software; you can redistribute it and/or modify |
7 |
* it under the terms of the GNU General Public License as published by |
8 |
* the Free Software Foundation; either version 2 of the License, or |
9 |
* (at your option) any later version. |
10 |
* |
11 |
* This program is distributed in the hope that it will be useful, |
12 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 |
* GNU General Public License for more details. |
15 |
* |
16 |
* You should have received a copy of the GNU General Public License |
17 |
* along with this program; if not, write to the Free Software |
18 |
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
19 |
*/ |
20 |
|
21 |
/* |
22 |
* Notes: |
23 |
* ------ |
24 |
* |
25 |
* - The Emulate() function is called for every emulated Phi2 |
26 |
* clock cycle. It counts down the timers and triggers |
27 |
* interrupts if necessary. |
28 |
* - The TOD clocks are counted by CountTOD() during the VBlank, so |
29 |
* the input frequency is 50Hz |
30 |
* - The fields KeyMatrix and RevMatrix contain one bit for each |
31 |
* key on the C64 keyboard (0: key pressed, 1: key released). |
32 |
* KeyMatrix is used for normal keyboard polling (PRA->PRB), |
33 |
* RevMatrix for reversed polling (PRB->PRA). |
34 |
* |
35 |
* Incompatibilities: |
36 |
* ------------------ |
37 |
* |
38 |
* - The TOD clock should not be stopped on a read access, but be |
39 |
* latched |
40 |
* - The SDR interrupt is faked |
41 |
* - Some small incompatibilities with the timers |
42 |
*/ |
43 |
|
44 |
#include "sysdeps.h" |
45 |
|
46 |
#include "CIA.h" |
47 |
#include "CPUC64.h" |
48 |
#include "CPU1541.h" |
49 |
#include "VIC.h" |
50 |
#include "Prefs.h" |
51 |
|
52 |
|
53 |
// Timer states |
54 |
enum { |
55 |
T_STOP, |
56 |
T_WAIT_THEN_COUNT, |
57 |
T_LOAD_THEN_STOP, |
58 |
T_LOAD_THEN_COUNT, |
59 |
T_LOAD_THEN_WAIT_THEN_COUNT, |
60 |
T_COUNT, |
61 |
T_COUNT_THEN_STOP |
62 |
}; |
63 |
|
64 |
|
65 |
/* |
66 |
* Constructors |
67 |
*/ |
68 |
|
69 |
MOS6526::MOS6526(MOS6510 *CPU) : the_cpu(CPU) {} |
70 |
MOS6526_1::MOS6526_1(MOS6510 *CPU, MOS6569 *VIC) : MOS6526(CPU), the_vic(VIC) {} |
71 |
MOS6526_2::MOS6526_2(MOS6510 *CPU, MOS6569 *VIC, MOS6502_1541 *CPU1541) : MOS6526(CPU), the_vic(VIC), the_cpu_1541(CPU1541) {} |
72 |
|
73 |
|
74 |
/* |
75 |
* Reset the CIA |
76 |
*/ |
77 |
|
78 |
void MOS6526::Reset(void) |
79 |
{ |
80 |
pra = prb = ddra = ddrb = 0; |
81 |
|
82 |
ta = tb = 0xffff; |
83 |
latcha = latchb = 1; |
84 |
|
85 |
tod_10ths = tod_sec = tod_min = tod_hr = 0; |
86 |
alm_10ths = alm_sec = alm_min = alm_hr = 0; |
87 |
|
88 |
sdr = icr = cra = crb = int_mask = 0; |
89 |
|
90 |
tod_halt = false; |
91 |
tod_divider = 0; |
92 |
|
93 |
ta_cnt_phi2 = tb_cnt_phi2 = tb_cnt_ta = false; |
94 |
|
95 |
ta_irq_next_cycle = tb_irq_next_cycle = false; |
96 |
has_new_cra = has_new_crb = false; |
97 |
ta_toggle = tb_toggle = false; |
98 |
ta_state = tb_state = T_STOP; |
99 |
} |
100 |
|
101 |
void MOS6526_1::Reset(void) |
102 |
{ |
103 |
MOS6526::Reset(); |
104 |
|
105 |
// Clear keyboard matrix and joystick states |
106 |
for (int i=0; i<8; i++) |
107 |
KeyMatrix[i] = RevMatrix[i] = 0xff; |
108 |
|
109 |
Joystick1 = Joystick2 = 0xff; |
110 |
prev_lp = 0x10; |
111 |
} |
112 |
|
113 |
void MOS6526_2::Reset(void) |
114 |
{ |
115 |
MOS6526::Reset(); |
116 |
|
117 |
// VA14/15 = 0 |
118 |
the_vic->ChangedVA(0); |
119 |
|
120 |
// IEC |
121 |
IECLines = 0xd0; |
122 |
} |
123 |
|
124 |
|
125 |
/* |
126 |
* Get CIA state |
127 |
*/ |
128 |
|
129 |
void MOS6526::GetState(MOS6526State *cs) |
130 |
{ |
131 |
cs->pra = pra; |
132 |
cs->prb = prb; |
133 |
cs->ddra = ddra; |
134 |
cs->ddrb = ddrb; |
135 |
|
136 |
cs->ta_lo = ta & 0xff; |
137 |
cs->ta_hi = ta >> 8; |
138 |
cs->tb_lo = tb & 0xff; |
139 |
cs->tb_hi = tb >> 8; |
140 |
cs->latcha = latcha; |
141 |
cs->latchb = latchb; |
142 |
cs->cra = cra; |
143 |
cs->crb = crb; |
144 |
|
145 |
cs->tod_10ths = tod_10ths; |
146 |
cs->tod_sec = tod_sec; |
147 |
cs->tod_min = tod_min; |
148 |
cs->tod_hr = tod_hr; |
149 |
cs->alm_10ths = alm_10ths; |
150 |
cs->alm_sec = alm_sec; |
151 |
cs->alm_min = alm_min; |
152 |
cs->alm_hr = alm_hr; |
153 |
|
154 |
cs->sdr = sdr; |
155 |
|
156 |
cs->int_data = icr; |
157 |
cs->int_mask = int_mask; |
158 |
} |
159 |
|
160 |
|
161 |
/* |
162 |
* Restore CIA state |
163 |
*/ |
164 |
|
165 |
void MOS6526::SetState(MOS6526State *cs) |
166 |
{ |
167 |
pra = cs->pra; |
168 |
prb = cs->prb; |
169 |
ddra = cs->ddra; |
170 |
ddrb = cs->ddrb; |
171 |
|
172 |
ta = (cs->ta_hi << 8) | cs->ta_lo; |
173 |
tb = (cs->tb_hi << 8) | cs->tb_lo; |
174 |
latcha = cs->latcha; |
175 |
latchb = cs->latchb; |
176 |
cra = cs->cra; |
177 |
crb = cs->crb; |
178 |
|
179 |
tod_10ths = cs->tod_10ths; |
180 |
tod_sec = cs->tod_sec; |
181 |
tod_min = cs->tod_min; |
182 |
tod_hr = cs->tod_hr; |
183 |
alm_10ths = cs->alm_10ths; |
184 |
alm_sec = cs->alm_sec; |
185 |
alm_min = cs->alm_min; |
186 |
alm_hr = cs->alm_hr; |
187 |
|
188 |
sdr = cs->sdr; |
189 |
|
190 |
icr = cs->int_data; |
191 |
int_mask = cs->int_mask; |
192 |
|
193 |
tod_halt = false; |
194 |
ta_cnt_phi2 = ((cra & 0x20) == 0x00); |
195 |
tb_cnt_phi2 = ((crb & 0x60) == 0x00); |
196 |
tb_cnt_ta = ((crb & 0x60) == 0x40); |
197 |
|
198 |
ta_state = (cra & 1) ? T_COUNT : T_STOP; |
199 |
tb_state = (crb & 1) ? T_COUNT : T_STOP; |
200 |
} |
201 |
|
202 |
|
203 |
/* |
204 |
* Output TA/TB to PB6/7 |
205 |
*/ |
206 |
|
207 |
inline uint8 MOS6526::timer_on_pb(uint8 prb) |
208 |
{ |
209 |
if (cra & 0x02) { |
210 |
|
211 |
// TA output to PB6 |
212 |
if ((cra & 0x04) ? ta_toggle : ta_irq_next_cycle) { |
213 |
prb |= 0x40; |
214 |
} else { |
215 |
prb &= 0xbf; |
216 |
} |
217 |
} |
218 |
|
219 |
if (crb & 0x02) { |
220 |
|
221 |
// TB output to PB7 |
222 |
if ((crb & 0x04) ? tb_toggle : tb_irq_next_cycle) { |
223 |
prb |= 0x80; |
224 |
} else { |
225 |
prb &= 0x7f; |
226 |
} |
227 |
} |
228 |
|
229 |
return prb; |
230 |
} |
231 |
|
232 |
|
233 |
/* |
234 |
* Read from register (CIA 1) |
235 |
*/ |
236 |
|
237 |
uint8 MOS6526_1::ReadRegister(uint16 adr) |
238 |
{ |
239 |
switch (adr) { |
240 |
case 0x00: { |
241 |
uint8 ret = pra | ~ddra, tst = (prb | ~ddrb) & Joystick1; |
242 |
if (!(tst & 0x01)) ret &= RevMatrix[0]; // AND all active columns |
243 |
if (!(tst & 0x02)) ret &= RevMatrix[1]; |
244 |
if (!(tst & 0x04)) ret &= RevMatrix[2]; |
245 |
if (!(tst & 0x08)) ret &= RevMatrix[3]; |
246 |
if (!(tst & 0x10)) ret &= RevMatrix[4]; |
247 |
if (!(tst & 0x20)) ret &= RevMatrix[5]; |
248 |
if (!(tst & 0x40)) ret &= RevMatrix[6]; |
249 |
if (!(tst & 0x80)) ret &= RevMatrix[7]; |
250 |
return ret & Joystick2; |
251 |
} |
252 |
case 0x01: { |
253 |
uint8 ret = ~ddrb, tst = (pra | ~ddra) & Joystick2; |
254 |
if (!(tst & 0x01)) ret &= KeyMatrix[0]; // AND all active rows |
255 |
if (!(tst & 0x02)) ret &= KeyMatrix[1]; |
256 |
if (!(tst & 0x04)) ret &= KeyMatrix[2]; |
257 |
if (!(tst & 0x08)) ret &= KeyMatrix[3]; |
258 |
if (!(tst & 0x10)) ret &= KeyMatrix[4]; |
259 |
if (!(tst & 0x20)) ret &= KeyMatrix[5]; |
260 |
if (!(tst & 0x40)) ret &= KeyMatrix[6]; |
261 |
if (!(tst & 0x80)) ret &= KeyMatrix[7]; |
262 |
ret = (ret | (prb & ddrb)) & Joystick1; |
263 |
|
264 |
// TA/TB output to PB enabled? |
265 |
if ((cra | crb) & 0x02) |
266 |
ret = timer_on_pb(ret); |
267 |
|
268 |
return ret; |
269 |
} |
270 |
case 0x02: return ddra; |
271 |
case 0x03: return ddrb; |
272 |
case 0x04: return ta; |
273 |
case 0x05: return ta >> 8; |
274 |
case 0x06: return tb; |
275 |
case 0x07: return tb >> 8; |
276 |
case 0x08: tod_halt = false; return tod_10ths; |
277 |
case 0x09: return tod_sec; |
278 |
case 0x0a: return tod_min; |
279 |
case 0x0b: tod_halt = true; return tod_hr; |
280 |
case 0x0c: return sdr; |
281 |
case 0x0d: { |
282 |
uint8 ret = icr; // Read and clear ICR |
283 |
icr = 0; |
284 |
the_cpu->ClearCIAIRQ(); // Clear IRQ |
285 |
return ret; |
286 |
} |
287 |
case 0x0e: return cra; |
288 |
case 0x0f: return crb; |
289 |
} |
290 |
return 0; // Can't happen |
291 |
} |
292 |
|
293 |
|
294 |
/* |
295 |
* Read from register (CIA 2) |
296 |
*/ |
297 |
|
298 |
uint8 MOS6526_2::ReadRegister(uint16 adr) |
299 |
{ |
300 |
switch (adr) { |
301 |
case 0x00: |
302 |
return (pra | ~ddra) & 0x3f |
303 |
| IECLines & the_cpu_1541->IECLines; |
304 |
case 0x01: { |
305 |
uint8 ret = prb | ~ddrb; |
306 |
|
307 |
// TA/TB output to PB enabled? |
308 |
if ((cra | crb) & 0x02) |
309 |
ret = timer_on_pb(ret); |
310 |
|
311 |
return ret; |
312 |
} |
313 |
case 0x02: return ddra; |
314 |
case 0x03: return ddrb; |
315 |
case 0x04: return ta; |
316 |
case 0x05: return ta >> 8; |
317 |
case 0x06: return tb; |
318 |
case 0x07: return tb >> 8; |
319 |
case 0x08: tod_halt = false; return tod_10ths; |
320 |
case 0x09: return tod_sec; |
321 |
case 0x0a: return tod_min; |
322 |
case 0x0b: tod_halt = true; return tod_hr; |
323 |
case 0x0c: return sdr; |
324 |
case 0x0d: { |
325 |
uint8 ret = icr; // Read and clear ICR |
326 |
icr = 0; |
327 |
the_cpu->ClearNMI(); |
328 |
return ret; |
329 |
} |
330 |
case 0x0e: return cra; |
331 |
case 0x0f: return crb; |
332 |
} |
333 |
return 0; // Can't happen |
334 |
} |
335 |
|
336 |
|
337 |
/* |
338 |
* Write to register (CIA 1) |
339 |
*/ |
340 |
|
341 |
// Write to port B, check for lightpen interrupt |
342 |
inline void MOS6526_1::check_lp(void) |
343 |
{ |
344 |
if ((prb | ~ddrb) & 0x10 != prev_lp) |
345 |
the_vic->TriggerLightpen(); |
346 |
prev_lp = (prb | ~ddrb) & 0x10; |
347 |
} |
348 |
|
349 |
void MOS6526_1::WriteRegister(uint16 adr, uint8 byte) |
350 |
{ |
351 |
switch (adr) { |
352 |
case 0x0: pra = byte; break; |
353 |
case 0x1: |
354 |
prb = byte; |
355 |
check_lp(); |
356 |
break; |
357 |
case 0x2: ddra = byte; break; |
358 |
case 0x3: |
359 |
ddrb = byte; |
360 |
check_lp(); |
361 |
break; |
362 |
|
363 |
case 0x4: latcha = (latcha & 0xff00) | byte; break; |
364 |
case 0x5: |
365 |
latcha = (latcha & 0xff) | (byte << 8); |
366 |
if (!(cra & 1)) // Reload timer if stopped |
367 |
ta = latcha; |
368 |
break; |
369 |
|
370 |
case 0x6: latchb = (latchb & 0xff00) | byte; break; |
371 |
case 0x7: |
372 |
latchb = (latchb & 0xff) | (byte << 8); |
373 |
if (!(crb & 1)) // Reload timer if stopped |
374 |
tb = latchb; |
375 |
break; |
376 |
|
377 |
case 0x8: |
378 |
if (crb & 0x80) |
379 |
alm_10ths = byte & 0x0f; |
380 |
else |
381 |
tod_10ths = byte & 0x0f; |
382 |
break; |
383 |
case 0x9: |
384 |
if (crb & 0x80) |
385 |
alm_sec = byte & 0x7f; |
386 |
else |
387 |
tod_sec = byte & 0x7f; |
388 |
break; |
389 |
case 0xa: |
390 |
if (crb & 0x80) |
391 |
alm_min = byte & 0x7f; |
392 |
else |
393 |
tod_min = byte & 0x7f; |
394 |
break; |
395 |
case 0xb: |
396 |
if (crb & 0x80) |
397 |
alm_hr = byte & 0x9f; |
398 |
else |
399 |
tod_hr = byte & 0x9f; |
400 |
break; |
401 |
|
402 |
case 0xc: |
403 |
sdr = byte; |
404 |
TriggerInterrupt(8); // Fake SDR interrupt for programs that need it |
405 |
break; |
406 |
|
407 |
case 0xd: |
408 |
if (byte & 0x80) |
409 |
int_mask |= byte & 0x7f; |
410 |
else |
411 |
int_mask &= ~byte; |
412 |
if (icr & int_mask & 0x7f) { // Trigger IRQ if pending |
413 |
icr |= 0x80; |
414 |
the_cpu->TriggerCIAIRQ(); |
415 |
} |
416 |
break; |
417 |
|
418 |
case 0xe: |
419 |
has_new_cra = true; // Delay write by 1 cycle |
420 |
new_cra = byte; |
421 |
ta_cnt_phi2 = ((byte & 0x20) == 0x00); |
422 |
break; |
423 |
|
424 |
case 0xf: |
425 |
has_new_crb = true; // Delay write by 1 cycle |
426 |
new_crb = byte; |
427 |
tb_cnt_phi2 = ((byte & 0x60) == 0x00); |
428 |
tb_cnt_ta = ((byte & 0x60) == 0x40); |
429 |
break; |
430 |
} |
431 |
} |
432 |
|
433 |
|
434 |
/* |
435 |
* Write to register (CIA 2) |
436 |
*/ |
437 |
|
438 |
void MOS6526_2::WriteRegister(uint16 adr, uint8 byte) |
439 |
{ |
440 |
switch (adr) { |
441 |
case 0x0:{ |
442 |
pra = byte; |
443 |
the_vic->ChangedVA(~(pra | ~ddra) & 3); |
444 |
uint8 old_lines = IECLines; |
445 |
IECLines = (~byte << 2) & 0x80 // DATA |
446 |
| (~byte << 2) & 0x40 // CLK |
447 |
| (~byte << 1) & 0x10; // ATN |
448 |
if ((IECLines ^ old_lines) & 0x10) { // ATN changed |
449 |
the_cpu_1541->NewATNState(); |
450 |
if (old_lines & 0x10) // ATN 1->0 |
451 |
the_cpu_1541->IECInterrupt(); |
452 |
} |
453 |
break; |
454 |
} |
455 |
case 0x1: prb = byte; break; |
456 |
|
457 |
case 0x2: |
458 |
ddra = byte; |
459 |
the_vic->ChangedVA(~(pra | ~ddra) & 3); |
460 |
break; |
461 |
case 0x3: ddrb = byte; break; |
462 |
|
463 |
case 0x4: latcha = (latcha & 0xff00) | byte; break; |
464 |
case 0x5: |
465 |
latcha = (latcha & 0xff) | (byte << 8); |
466 |
if (!(cra & 1)) // Reload timer if stopped |
467 |
ta = latcha; |
468 |
break; |
469 |
|
470 |
case 0x6: latchb = (latchb & 0xff00) | byte; break; |
471 |
case 0x7: |
472 |
latchb = (latchb & 0xff) | (byte << 8); |
473 |
if (!(crb & 1)) // Reload timer if stopped |
474 |
tb = latchb; |
475 |
break; |
476 |
|
477 |
case 0x8: |
478 |
if (crb & 0x80) |
479 |
alm_10ths = byte & 0x0f; |
480 |
else |
481 |
tod_10ths = byte & 0x0f; |
482 |
break; |
483 |
case 0x9: |
484 |
if (crb & 0x80) |
485 |
alm_sec = byte & 0x7f; |
486 |
else |
487 |
tod_sec = byte & 0x7f; |
488 |
break; |
489 |
case 0xa: |
490 |
if (crb & 0x80) |
491 |
alm_min = byte & 0x7f; |
492 |
else |
493 |
tod_min = byte & 0x7f; |
494 |
break; |
495 |
case 0xb: |
496 |
if (crb & 0x80) |
497 |
alm_hr = byte & 0x9f; |
498 |
else |
499 |
tod_hr = byte & 0x9f; |
500 |
break; |
501 |
|
502 |
case 0xc: |
503 |
sdr = byte; |
504 |
TriggerInterrupt(8); // Fake SDR interrupt for programs that need it |
505 |
break; |
506 |
|
507 |
case 0xd: |
508 |
if (byte & 0x80) |
509 |
int_mask |= byte & 0x7f; |
510 |
else |
511 |
int_mask &= ~byte; |
512 |
if (icr & int_mask & 0x1f) { // Trigger NMI if pending |
513 |
icr |= 0x80; |
514 |
the_cpu->TriggerNMI(); |
515 |
} |
516 |
break; |
517 |
|
518 |
case 0xe: |
519 |
has_new_cra = true; // Delay write by 1 cycle |
520 |
new_cra = byte; |
521 |
ta_cnt_phi2 = ((byte & 0x20) == 0x00); |
522 |
break; |
523 |
|
524 |
case 0xf: |
525 |
has_new_crb = true; // Delay write by 1 cycle |
526 |
new_crb = byte; |
527 |
tb_cnt_phi2 = ((byte & 0x60) == 0x00); |
528 |
tb_cnt_ta = ((byte & 0x60) == 0x40); |
529 |
break; |
530 |
} |
531 |
} |
532 |
|
533 |
|
534 |
/* |
535 |
* Emulate CIA for one cycle/raster line |
536 |
*/ |
537 |
|
538 |
void MOS6526::EmulateCycle(void) |
539 |
{ |
540 |
bool ta_underflow = false; |
541 |
|
542 |
// Timer A state machine |
543 |
switch (ta_state) { |
544 |
case T_WAIT_THEN_COUNT: |
545 |
ta_state = T_COUNT; // fall through |
546 |
case T_STOP: |
547 |
goto ta_idle; |
548 |
case T_LOAD_THEN_STOP: |
549 |
ta_state = T_STOP; |
550 |
ta = latcha; // Reload timer |
551 |
goto ta_idle; |
552 |
case T_LOAD_THEN_COUNT: |
553 |
ta_state = T_COUNT; |
554 |
ta = latcha; // Reload timer |
555 |
goto ta_idle; |
556 |
case T_LOAD_THEN_WAIT_THEN_COUNT: |
557 |
ta_state = T_WAIT_THEN_COUNT; |
558 |
if (ta == 1) |
559 |
goto ta_interrupt; // Interrupt if timer == 1 |
560 |
else { |
561 |
ta = latcha; // Reload timer |
562 |
goto ta_idle; |
563 |
} |
564 |
case T_COUNT: |
565 |
goto ta_count; |
566 |
case T_COUNT_THEN_STOP: |
567 |
ta_state = T_STOP; |
568 |
goto ta_count; |
569 |
} |
570 |
|
571 |
// Count timer A |
572 |
ta_count: |
573 |
if (ta_cnt_phi2) |
574 |
if (!ta || !--ta) { // Decrement timer, underflow? |
575 |
if (ta_state != T_STOP) { |
576 |
ta_interrupt: |
577 |
ta = latcha; // Reload timer |
578 |
ta_irq_next_cycle = true; // Trigger interrupt in next cycle |
579 |
icr |= 1; // But set ICR bit now |
580 |
ta_toggle = !ta_toggle; // Toggle PB6 output |
581 |
|
582 |
if (cra & 8) { // One-shot? |
583 |
cra &= 0xfe; // Yes, stop timer |
584 |
new_cra &= 0xfe; |
585 |
ta_state = T_LOAD_THEN_STOP; // Reload in next cycle |
586 |
} else |
587 |
ta_state = T_LOAD_THEN_COUNT; // No, delay one cycle (and reload) |
588 |
} |
589 |
ta_underflow = true; |
590 |
} |
591 |
|
592 |
// Delayed write to CRA? |
593 |
ta_idle: |
594 |
if (has_new_cra) { |
595 |
switch (ta_state) { |
596 |
case T_STOP: |
597 |
case T_LOAD_THEN_STOP: |
598 |
if (new_cra & 1) { // Timer started, wasn't running |
599 |
ta_toggle = true; // Starting the timer resets the toggle bit |
600 |
if (new_cra & 0x10) // Force load |
601 |
ta_state = T_LOAD_THEN_WAIT_THEN_COUNT; |
602 |
else // No force load |
603 |
ta_state = T_WAIT_THEN_COUNT; |
604 |
} else { // Timer stopped, was already stopped |
605 |
if (new_cra & 0x10) // Force load |
606 |
ta_state = T_LOAD_THEN_STOP; |
607 |
} |
608 |
break; |
609 |
case T_COUNT: |
610 |
if (new_cra & 1) { // Timer started, was already running |
611 |
if (new_cra & 0x10) // Force load |
612 |
ta_state = T_LOAD_THEN_WAIT_THEN_COUNT; |
613 |
} else { // Timer stopped, was running |
614 |
if (new_cra & 0x10) // Force load |
615 |
ta_state = T_LOAD_THEN_STOP; |
616 |
else // No force load |
617 |
ta_state = T_COUNT_THEN_STOP; |
618 |
} |
619 |
break; |
620 |
case T_LOAD_THEN_COUNT: |
621 |
case T_WAIT_THEN_COUNT: |
622 |
if (new_cra & 1) { |
623 |
if (new_cra & 8) { // One-shot? |
624 |
new_cra &= 0xfe; // Yes, stop timer |
625 |
ta_state = T_STOP; |
626 |
} else if (new_cra & 0x10) // Force load |
627 |
ta_state = T_LOAD_THEN_WAIT_THEN_COUNT; |
628 |
} else { |
629 |
ta_state = T_STOP; |
630 |
} |
631 |
break; |
632 |
} |
633 |
cra = new_cra & 0xef; |
634 |
has_new_cra = false; |
635 |
} |
636 |
|
637 |
// Timer B state machine |
638 |
switch (tb_state) { |
639 |
case T_WAIT_THEN_COUNT: |
640 |
tb_state = T_COUNT; // fall through |
641 |
case T_STOP: |
642 |
goto tb_idle; |
643 |
case T_LOAD_THEN_STOP: |
644 |
tb_state = T_STOP; |
645 |
tb = latchb; // Reload timer |
646 |
goto tb_idle; |
647 |
case T_LOAD_THEN_COUNT: |
648 |
tb_state = T_COUNT; |
649 |
tb = latchb; // Reload timer |
650 |
goto tb_idle; |
651 |
case T_LOAD_THEN_WAIT_THEN_COUNT: |
652 |
tb_state = T_WAIT_THEN_COUNT; |
653 |
if (tb == 1) |
654 |
goto tb_interrupt; // Interrupt if timer == 1 |
655 |
else { |
656 |
tb = latchb; // Reload timer |
657 |
goto tb_idle; |
658 |
} |
659 |
case T_COUNT: |
660 |
goto tb_count; |
661 |
case T_COUNT_THEN_STOP: |
662 |
tb_state = T_STOP; |
663 |
goto tb_count; |
664 |
} |
665 |
|
666 |
// Count timer B |
667 |
tb_count: |
668 |
if (tb_cnt_phi2 || (tb_cnt_ta && ta_underflow)) |
669 |
if (!tb || !--tb) { // Decrement timer, underflow? |
670 |
if (tb_state != T_STOP) { |
671 |
tb_interrupt: |
672 |
tb = latchb; // Reload timer |
673 |
tb_irq_next_cycle = true; // Trigger interrupt in next cycle |
674 |
icr |= 2; // But set ICR bit now |
675 |
tb_toggle = !tb_toggle; // Toggle PB7 output |
676 |
|
677 |
if (crb & 8) { // One-shot? |
678 |
crb &= 0xfe; // Yes, stop timer |
679 |
new_crb &= 0xfe; |
680 |
tb_state = T_LOAD_THEN_STOP; // Reload in next cycle |
681 |
} else |
682 |
tb_state = T_LOAD_THEN_COUNT; // No, delay one cycle (and reload) |
683 |
} |
684 |
} |
685 |
|
686 |
// Delayed write to CRB? |
687 |
tb_idle: |
688 |
if (has_new_crb) { |
689 |
switch (tb_state) { |
690 |
case T_STOP: |
691 |
case T_LOAD_THEN_STOP: |
692 |
if (new_crb & 1) { // Timer started, wasn't running |
693 |
tb_toggle = true; // Starting the timer resets the toggle bit |
694 |
if (new_crb & 0x10) // Force load |
695 |
tb_state = T_LOAD_THEN_WAIT_THEN_COUNT; |
696 |
else // No force load |
697 |
tb_state = T_WAIT_THEN_COUNT; |
698 |
} else { // Timer stopped, was already stopped |
699 |
if (new_crb & 0x10) // Force load |
700 |
tb_state = T_LOAD_THEN_STOP; |
701 |
} |
702 |
break; |
703 |
case T_COUNT: |
704 |
if (new_crb & 1) { // Timer started, was already running |
705 |
if (new_crb & 0x10) // Force load |
706 |
tb_state = T_LOAD_THEN_WAIT_THEN_COUNT; |
707 |
} else { // Timer stopped, was running |
708 |
if (new_crb & 0x10) // Force load |
709 |
tb_state = T_LOAD_THEN_STOP; |
710 |
else // No force load |
711 |
tb_state = T_COUNT_THEN_STOP; |
712 |
} |
713 |
break; |
714 |
case T_LOAD_THEN_COUNT: |
715 |
case T_WAIT_THEN_COUNT: |
716 |
if (new_crb & 1) { |
717 |
if (new_crb & 8) { // One-shot? |
718 |
new_crb &= 0xfe; // Yes, stop timer |
719 |
tb_state = T_STOP; |
720 |
} else if (new_crb & 0x10) // Force load |
721 |
tb_state = T_LOAD_THEN_WAIT_THEN_COUNT; |
722 |
} else { |
723 |
tb_state = T_STOP; |
724 |
} |
725 |
break; |
726 |
} |
727 |
crb = new_crb & 0xef; |
728 |
has_new_crb = false; |
729 |
} |
730 |
} |
731 |
|
732 |
|
733 |
/* |
734 |
* Count CIA TOD clock (called during VBlank) |
735 |
*/ |
736 |
|
737 |
void MOS6526::CountTOD(void) |
738 |
{ |
739 |
uint8 lo, hi; |
740 |
|
741 |
// Decrement frequency divider |
742 |
if (tod_divider) |
743 |
tod_divider--; |
744 |
else { |
745 |
|
746 |
// Reload divider according to 50/60 Hz flag |
747 |
if (cra & 0x80) |
748 |
tod_divider = 4; |
749 |
else |
750 |
tod_divider = 5; |
751 |
|
752 |
// 1/10 seconds |
753 |
tod_10ths++; |
754 |
if (tod_10ths > 9) { |
755 |
tod_10ths = 0; |
756 |
|
757 |
// Seconds |
758 |
lo = (tod_sec & 0x0f) + 1; |
759 |
hi = tod_sec >> 4; |
760 |
if (lo > 9) { |
761 |
lo = 0; |
762 |
hi++; |
763 |
} |
764 |
if (hi > 5) { |
765 |
tod_sec = 0; |
766 |
|
767 |
// Minutes |
768 |
lo = (tod_min & 0x0f) + 1; |
769 |
hi = tod_min >> 4; |
770 |
if (lo > 9) { |
771 |
lo = 0; |
772 |
hi++; |
773 |
} |
774 |
if (hi > 5) { |
775 |
tod_min = 0; |
776 |
|
777 |
// Hours |
778 |
lo = (tod_hr & 0x0f) + 1; |
779 |
hi = (tod_hr >> 4) & 1; |
780 |
tod_hr &= 0x80; // Keep AM/PM flag |
781 |
if (lo > 9) { |
782 |
lo = 0; |
783 |
hi++; |
784 |
} |
785 |
tod_hr |= (hi << 4) | lo; |
786 |
if ((tod_hr & 0x1f) > 0x11) |
787 |
tod_hr = tod_hr & 0x80 ^ 0x80; |
788 |
} else |
789 |
tod_min = (hi << 4) | lo; |
790 |
} else |
791 |
tod_sec = (hi << 4) | lo; |
792 |
} |
793 |
|
794 |
// Alarm time reached? Trigger interrupt if enabled |
795 |
if (tod_10ths == alm_10ths && tod_sec == alm_sec && |
796 |
tod_min == alm_min && tod_hr == alm_hr) |
797 |
TriggerInterrupt(4); |
798 |
} |
799 |
} |
800 |
|
801 |
|
802 |
/* |
803 |
* Trigger IRQ (CIA 1) |
804 |
*/ |
805 |
|
806 |
void MOS6526_1::TriggerInterrupt(int bit) |
807 |
{ |
808 |
icr |= bit; |
809 |
if (int_mask & bit) { |
810 |
icr |= 0x80; |
811 |
the_cpu->TriggerCIAIRQ(); |
812 |
} |
813 |
} |
814 |
|
815 |
|
816 |
/* |
817 |
* Trigger NMI (CIA 2) |
818 |
*/ |
819 |
|
820 |
void MOS6526_2::TriggerInterrupt(int bit) |
821 |
{ |
822 |
icr |= bit; |
823 |
if (int_mask & bit) { |
824 |
icr |= 0x80; |
825 |
the_cpu->TriggerNMI(); |
826 |
} |
827 |
} |