ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/Unix/main_unix.cpp
Revision: 1.30
Committed: 2004-02-15T17:20:36Z (20 years, 3 months ago) by gbeauche
Branch: MAIN
Changes since 1.29: +4 -2 lines
Log Message:
Now that we have AltiVec emulation, we can pretend for a G4 processor
Also make sure to actually fix PVR code for 7400

File Contents

# User Rev Content
1 cebix 1.1 /*
2     * main_unix.cpp - Emulation core, Unix implementation
3     *
4 cebix 1.25 * SheepShaver (C) 1997-2004 Christian Bauer and Marc Hellwig
5 cebix 1.1 *
6     * This program is free software; you can redistribute it and/or modify
7     * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation; either version 2 of the License, or
9     * (at your option) any later version.
10     *
11     * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15     *
16     * You should have received a copy of the GNU General Public License
17     * along with this program; if not, write to the Free Software
18     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19     */
20    
21     /*
22     * NOTES:
23     *
24     * See main_beos.cpp for a description of the three operating modes.
25     *
26     * In addition to that, we have to handle the fact that the MacOS ABI
27     * is slightly different from the SysV ABI used by Linux:
28     * - Stack frames are different (e.g. LR is stored in 8(r1) under
29     * MacOS, but in 4(r1) under Linux)
30     * - There is no TOC under Linux; r2 is free for the user
31     * - r13 is used as a small data pointer under Linux (but appearently
32     * it is not used this way? To be sure, we specify -msdata=none
33     * in the Makefile)
34     * - As there is no TOC, there are also no TVECTs under Linux;
35     * function pointers point directly to the function code
36     * The Execute*() functions have to account for this. Additionally, we
37     * cannot simply call MacOS functions by getting their TVECT and jumping
38     * to it. Such calls are done via the call_macos*() functions in
39     * asm_linux.S that create a MacOS stack frame, load the TOC pointer
40     * and put the arguments into the right registers.
41     *
42     * As on the BeOS, we have to specify an alternate signal stack because
43     * interrupts (and, under Linux, Low Memory accesses) may occur when r1
44     * is pointing to the Kernel Data or to Low Memory. There is one
45     * problem, however, due to the alternate signal stack being global to
46     * all signal handlers. Consider the following scenario:
47     * - The main thread is executing some native PPC MacOS code in
48     * MODE_NATIVE, running on the MacOS stack (somewhere in the Mac RAM).
49     * - A SIGUSR2 interrupt occurs. The kernel switches to the signal
50     * stack and starts executing the SIGUSR2 signal handler.
51     * - The signal handler sees the MODE_NATIVE and calls ppc_interrupt()
52     * to handle a native interrupt.
53     * - ppc_interrupt() sets r1 to point to the Kernel Data and jumps to
54     * the nanokernel.
55     * - The nanokernel accesses a Low Memory global (most likely one of
56     * the XLMs), a SIGSEGV occurs.
57     * - The kernel sees that r1 does not point to the signal stack and
58     * switches to the signal stack again, thus overwriting the data that
59     * the SIGUSR2 handler put there.
60     * The same problem arises when calling ExecutePPC() inside the MODE_EMUL_OP
61     * interrupt handler.
62     *
63     * The solution is to set the signal stack to a second, "extra" stack
64     * inside the SIGUSR2 handler before entering the Nanokernel or calling
65     * ExecutePPC (or any function that might cause a mode switch). The signal
66     * stack is restored before exiting the SIGUSR2 handler.
67     *
68     * TODO:
69     * check if SIGSEGV handler works for all registers (including FP!)
70     */
71    
72     #include <unistd.h>
73     #include <fcntl.h>
74     #include <time.h>
75     #include <errno.h>
76     #include <stdio.h>
77     #include <stdlib.h>
78     #include <string.h>
79     #include <pthread.h>
80     #include <sys/mman.h>
81     #include <sys/ipc.h>
82     #include <sys/shm.h>
83     #include <signal.h>
84    
85     #include "sysdeps.h"
86     #include "main.h"
87     #include "version.h"
88     #include "prefs.h"
89     #include "prefs_editor.h"
90     #include "cpu_emulation.h"
91     #include "emul_op.h"
92     #include "xlowmem.h"
93     #include "xpram.h"
94     #include "timer.h"
95     #include "adb.h"
96     #include "sony.h"
97     #include "disk.h"
98     #include "cdrom.h"
99     #include "scsi.h"
100     #include "video.h"
101     #include "audio.h"
102     #include "ether.h"
103     #include "serial.h"
104     #include "clip.h"
105     #include "extfs.h"
106     #include "sys.h"
107     #include "macos_util.h"
108     #include "rom_patches.h"
109     #include "user_strings.h"
110 gbeauche 1.4 #include "vm_alloc.h"
111 gbeauche 1.5 #include "sigsegv.h"
112 gbeauche 1.15 #include "thunks.h"
113 cebix 1.1
114     #define DEBUG 0
115     #include "debug.h"
116    
117    
118     #include <X11/Xlib.h>
119    
120     #ifdef ENABLE_GTK
121     #include <gtk/gtk.h>
122     #endif
123    
124     #ifdef ENABLE_XF86_DGA
125     #include <X11/Xlib.h>
126     #include <X11/Xutil.h>
127     #include <X11/extensions/xf86dga.h>
128     #endif
129    
130     #ifdef ENABLE_MON
131     #include "mon.h"
132     #endif
133    
134    
135 gbeauche 1.23 // Enable emulation of unaligned lmw/stmw?
136     #define EMULATE_UNALIGNED_LOADSTORE_MULTIPLE 1
137    
138 cebix 1.1 // Enable Execute68k() safety checks?
139     #define SAFE_EXEC_68K 0
140    
141     // Interrupts in EMUL_OP mode?
142     #define INTERRUPTS_IN_EMUL_OP_MODE 1
143    
144     // Interrupts in native mode?
145     #define INTERRUPTS_IN_NATIVE_MODE 1
146    
147    
148     // Constants
149     const char ROM_FILE_NAME[] = "ROM";
150     const char ROM_FILE_NAME2[] = "Mac OS ROM";
151    
152 gbeauche 1.15 const uintptr RAM_BASE = 0x20000000; // Base address of RAM
153 cebix 1.1 const uint32 SIG_STACK_SIZE = 0x10000; // Size of signal stack
154    
155    
156     #if !EMULATED_PPC
157 gbeauche 1.26 struct sigregs {
158     uint32 nip;
159     uint32 link;
160     uint32 ctr;
161     uint32 msr;
162     uint32 xer;
163     uint32 ccr;
164     uint32 gpr[32];
165     };
166 cebix 1.1
167 gbeauche 1.26 #if defined(__linux__)
168 gbeauche 1.28 #include <sys/ucontext.h>
169     #define MACHINE_REGISTERS(scp) ((machine_regs *)(((ucontext_t *)scp)->uc_mcontext.regs))
170    
171 gbeauche 1.26 struct machine_regs : public pt_regs
172     {
173     u_long & cr() { return pt_regs::ccr; }
174     uint32 cr() const { return pt_regs::ccr; }
175     uint32 lr() const { return pt_regs::link; }
176     uint32 ctr() const { return pt_regs::ctr; }
177     uint32 xer() const { return pt_regs::xer; }
178     uint32 msr() const { return pt_regs::msr; }
179     uint32 dar() const { return pt_regs::dar; }
180     u_long & pc() { return pt_regs::nip; }
181     uint32 pc() const { return pt_regs::nip; }
182     u_long & gpr(int i) { return pt_regs::gpr[i]; }
183     uint32 gpr(int i) const { return pt_regs::gpr[i]; }
184 cebix 1.1 };
185 gbeauche 1.28 #endif
186    
187     #if defined(__APPLE__) && defined(__MACH__)
188     #include <sys/signal.h>
189     extern "C" int sigaltstack(const struct sigaltstack *ss, struct sigaltstack *oss);
190 gbeauche 1.26
191     #include <sys/ucontext.h>
192 gbeauche 1.28 #define MACHINE_REGISTERS(scp) ((machine_regs *)(((ucontext_t *)scp)->uc_mcontext))
193 gbeauche 1.26
194     struct machine_regs : public mcontext
195     {
196     uint32 & cr() { return ss.cr; }
197     uint32 cr() const { return ss.cr; }
198     uint32 lr() const { return ss.lr; }
199     uint32 ctr() const { return ss.ctr; }
200     uint32 xer() const { return ss.xer; }
201     uint32 msr() const { return ss.srr1; }
202     uint32 dar() const { return es.dar; }
203     uint32 & pc() { return ss.srr0; }
204     uint32 pc() const { return ss.srr0; }
205     uint32 & gpr(int i) { return (&ss.r0)[i]; }
206     uint32 gpr(int i) const { return (&ss.r0)[i]; }
207     };
208     #endif
209    
210     static void build_sigregs(sigregs *srp, machine_regs *mrp)
211     {
212     srp->nip = mrp->pc();
213     srp->link = mrp->lr();
214     srp->ctr = mrp->ctr();
215     srp->msr = mrp->msr();
216     srp->xer = mrp->xer();
217     srp->ccr = mrp->cr();
218     for (int i = 0; i < 32; i++)
219     srp->gpr[i] = mrp->gpr(i);
220     }
221 cebix 1.1 #endif
222    
223    
224     // Global variables (exported)
225     #if !EMULATED_PPC
226     void *TOC; // Small data pointer (r13)
227     #endif
228     uint32 RAMBase; // Base address of Mac RAM
229     uint32 RAMSize; // Size of Mac RAM
230     uint32 KernelDataAddr; // Address of Kernel Data
231     uint32 BootGlobsAddr; // Address of BootGlobs structure at top of Mac RAM
232     uint32 PVR; // Theoretical PVR
233     int64 CPUClockSpeed; // Processor clock speed (Hz)
234     int64 BusClockSpeed; // Bus clock speed (Hz)
235    
236    
237     // Global variables
238 gbeauche 1.11 char *x_display_name = NULL; // X11 display name
239 cebix 1.1 Display *x_display = NULL; // X11 display handle
240 gbeauche 1.21 #ifdef X11_LOCK_TYPE
241     X11_LOCK_TYPE x_display_lock = X11_LOCK_INIT; // X11 display lock
242     #endif
243 cebix 1.1
244     static int zero_fd = 0; // FD of /dev/zero
245     static bool lm_area_mapped = false; // Flag: Low Memory area mmap()ped
246     static int kernel_area = -1; // SHM ID of Kernel Data area
247     static bool rom_area_mapped = false; // Flag: Mac ROM mmap()ped
248     static bool ram_area_mapped = false; // Flag: Mac RAM mmap()ped
249     static KernelData *kernel_data; // Pointer to Kernel Data
250     static EmulatorData *emulator_data;
251    
252     static uint8 last_xpram[XPRAM_SIZE]; // Buffer for monitoring XPRAM changes
253    
254     static bool nvram_thread_active = false; // Flag: NVRAM watchdog installed
255     static pthread_t nvram_thread; // NVRAM watchdog
256     static bool tick_thread_active = false; // Flag: MacOS thread installed
257     static pthread_t tick_thread; // 60Hz thread
258     static pthread_t emul_thread; // MacOS thread
259    
260     static bool ready_for_signals = false; // Handler installed, signals can be sent
261     static int64 num_segv = 0; // Number of handled SEGV signals
262    
263 gbeauche 1.6 static struct sigaction sigusr2_action; // Interrupt signal (of emulator thread)
264 gbeauche 1.20 #if EMULATED_PPC
265     static uintptr sig_stack = 0; // Stack for PowerPC interrupt routine
266     #else
267 cebix 1.1 static struct sigaction sigsegv_action; // Data access exception signal (of emulator thread)
268     static struct sigaction sigill_action; // Illegal instruction signal (of emulator thread)
269     static void *sig_stack = NULL; // Stack for signal handlers
270     static void *extra_stack = NULL; // Stack for SIGSEGV inside interrupt handler
271     static bool emul_thread_fatal = false; // Flag: MacOS thread crashed, tick thread shall dump debug output
272     static sigregs sigsegv_regs; // Register dump when crashed
273 gbeauche 1.23 static const char *crash_reason = NULL; // Reason of the crash (SIGSEGV, SIGBUS, SIGILL)
274 cebix 1.1 #endif
275    
276 gbeauche 1.18 uintptr SheepMem::zero_page = 0; // Address of ro page filled in with zeros
277 gbeauche 1.15 uintptr SheepMem::base = 0x60000000; // Address of SheepShaver data
278     uintptr SheepMem::top = 0; // Top of SheepShaver data (stack like storage)
279    
280 cebix 1.1
281     // Prototypes
282     static void Quit(void);
283     static void *emul_func(void *arg);
284     static void *nvram_func(void *arg);
285     static void *tick_func(void *arg);
286 gbeauche 1.8 #if EMULATED_PPC
287     static void sigusr2_handler(int sig);
288 gbeauche 1.13 extern void emul_ppc(uint32 start);
289     extern void init_emul_ppc(void);
290     extern void exit_emul_ppc(void);
291 gbeauche 1.8 #else
292 gbeauche 1.26 static void sigusr2_handler(int sig, siginfo_t *sip, void *scp);
293     static void sigsegv_handler(int sig, siginfo_t *sip, void *scp);
294     static void sigill_handler(int sig, siginfo_t *sip, void *scp);
295 cebix 1.1 #endif
296    
297    
298     // From asm_linux.S
299 gbeauche 1.12 #if !EMULATED_PPC
300 cebix 1.1 extern "C" void *get_toc(void);
301     extern "C" void *get_sp(void);
302     extern "C" void flush_icache_range(void *start, void *end);
303     extern "C" void jump_to_rom(uint32 entry, uint32 context);
304     extern "C" void quit_emulator(void);
305     extern "C" void execute_68k(uint32 pc, M68kRegisters *r);
306     extern "C" void ppc_interrupt(uint32 entry, uint32 kernel_data);
307     extern "C" int atomic_add(int *var, int v);
308     extern "C" int atomic_and(int *var, int v);
309     extern "C" int atomic_or(int *var, int v);
310     extern void paranoia_check(void);
311 gbeauche 1.12 #endif
312    
313    
314     #if EMULATED_PPC
315     /*
316 gbeauche 1.20 * Return signal stack base
317     */
318    
319     uintptr SignalStackBase(void)
320     {
321     return sig_stack + SIG_STACK_SIZE;
322     }
323    
324    
325     /*
326 gbeauche 1.12 * Atomic operations
327     */
328    
329     #if HAVE_SPINLOCKS
330     static spinlock_t atomic_ops_lock = SPIN_LOCK_UNLOCKED;
331     #else
332     #define spin_lock(LOCK)
333     #define spin_unlock(LOCK)
334     #endif
335    
336     int atomic_add(int *var, int v)
337     {
338     spin_lock(&atomic_ops_lock);
339     int ret = *var;
340     *var += v;
341     spin_unlock(&atomic_ops_lock);
342     return ret;
343     }
344    
345     int atomic_and(int *var, int v)
346     {
347     spin_lock(&atomic_ops_lock);
348     int ret = *var;
349     *var &= v;
350     spin_unlock(&atomic_ops_lock);
351     return ret;
352     }
353    
354     int atomic_or(int *var, int v)
355     {
356     spin_lock(&atomic_ops_lock);
357     int ret = *var;
358     *var |= v;
359     spin_unlock(&atomic_ops_lock);
360     return ret;
361     }
362 cebix 1.1 #endif
363    
364    
365     /*
366     * Main program
367     */
368    
369     static void usage(const char *prg_name)
370     {
371     printf("Usage: %s [OPTION...]\n", prg_name);
372     printf("\nUnix options:\n");
373     printf(" --display STRING\n X display to use\n");
374     PrefsPrintUsage();
375     exit(0);
376     }
377    
378     int main(int argc, char **argv)
379     {
380     char str[256];
381     uint32 *boot_globs;
382     int16 i16;
383     int rom_fd;
384     FILE *proc_file;
385     const char *rom_path;
386     uint32 rom_size, actual;
387     uint8 *rom_tmp;
388     time_t now, expire;
389    
390     // Initialize variables
391     RAMBase = 0;
392     tzset();
393    
394     // Print some info
395     printf(GetString(STR_ABOUT_TEXT1), VERSION_MAJOR, VERSION_MINOR);
396     printf(" %s\n", GetString(STR_ABOUT_TEXT2));
397    
398     #if !EMULATED_PPC
399     // Get TOC pointer
400     TOC = get_toc();
401     #endif
402    
403     #ifdef ENABLE_GTK
404     // Init GTK
405     gtk_set_locale();
406     gtk_init(&argc, &argv);
407     #endif
408    
409     // Read preferences
410     PrefsInit(argc, argv);
411    
412     // Parse command line arguments
413     for (int i=1; i<argc; i++) {
414     if (strcmp(argv[i], "--help") == 0) {
415     usage(argv[0]);
416     } else if (strcmp(argv[i], "--display") == 0) {
417     i++;
418     if (i < argc)
419     x_display_name = strdup(argv[i]);
420     } else if (argv[i][0] == '-') {
421     fprintf(stderr, "Unrecognized option '%s'\n", argv[i]);
422     usage(argv[0]);
423     }
424     }
425    
426     // Open display
427     x_display = XOpenDisplay(x_display_name);
428     if (x_display == NULL) {
429     char str[256];
430     sprintf(str, GetString(STR_NO_XSERVER_ERR), XDisplayName(x_display_name));
431     ErrorAlert(str);
432     goto quit;
433     }
434    
435     #if defined(ENABLE_XF86_DGA) && !defined(ENABLE_MON)
436     // Fork out, so we can return from fullscreen mode when things get ugly
437     XF86DGAForkApp(DefaultScreen(x_display));
438     #endif
439    
440     #ifdef ENABLE_MON
441     // Initialize mon
442     mon_init();
443     #endif
444    
445     // Get system info
446     PVR = 0x00040000; // Default: 604
447     CPUClockSpeed = 100000000; // Default: 100MHz
448     BusClockSpeed = 100000000; // Default: 100MHz
449 gbeauche 1.30 #if EMULATED_PPC
450     PVR = 0x000c0000; // Default: 7400 (with AltiVec)
451     #else
452 cebix 1.1 proc_file = fopen("/proc/cpuinfo", "r");
453     if (proc_file) {
454     char line[256];
455     while(fgets(line, 255, proc_file)) {
456     // Read line
457     int len = strlen(line);
458     if (len == 0)
459     continue;
460     line[len-1] = 0;
461    
462     // Parse line
463     int i;
464     char value[256];
465 gbeauche 1.29 if (sscanf(line, "cpu : %[0-9A-Za-a]", value) == 1) {
466 cebix 1.1 if (strcmp(value, "601") == 0)
467     PVR = 0x00010000;
468     else if (strcmp(value, "603") == 0)
469     PVR = 0x00030000;
470     else if (strcmp(value, "604") == 0)
471     PVR = 0x00040000;
472     else if (strcmp(value, "603e") == 0)
473     PVR = 0x00060000;
474     else if (strcmp(value, "603ev") == 0)
475     PVR = 0x00070000;
476     else if (strcmp(value, "604e") == 0)
477     PVR = 0x00090000;
478     else if (strcmp(value, "604ev5") == 0)
479     PVR = 0x000a0000;
480     else if (strcmp(value, "750") == 0)
481     PVR = 0x00080000;
482     else if (strcmp(value, "821") == 0)
483     PVR = 0x00320000;
484     else if (strcmp(value, "860") == 0)
485     PVR = 0x00500000;
486 gbeauche 1.29 else if (strcmp(value, "7400") == 0)
487 gbeauche 1.30 PVR = 0x000c0000;
488 gbeauche 1.29 else if (strcmp(value, "7410") == 0)
489     PVR = 0x800c0000;
490 cebix 1.1 else
491     printf("WARNING: Unknown CPU type '%s', assuming 604\n", value);
492     }
493     if (sscanf(line, "clock : %dMHz", &i) == 1)
494     CPUClockSpeed = BusClockSpeed = i * 1000000;
495     }
496     fclose(proc_file);
497     } else {
498     sprintf(str, GetString(STR_PROC_CPUINFO_WARN), strerror(errno));
499     WarningAlert(str);
500     }
501     #endif
502     D(bug("PVR: %08x (assumed)\n", PVR));
503    
504     // Init system routines
505     SysInit();
506    
507     // Show preferences editor
508     if (!PrefsFindBool("nogui"))
509     if (!PrefsEditor())
510     goto quit;
511    
512     #if !EMULATED_PPC
513     // Check some things
514     paranoia_check();
515     #endif
516    
517     // Open /dev/zero
518     zero_fd = open("/dev/zero", O_RDWR);
519     if (zero_fd < 0) {
520     sprintf(str, GetString(STR_NO_DEV_ZERO_ERR), strerror(errno));
521     ErrorAlert(str);
522     goto quit;
523     }
524    
525 gbeauche 1.26 #ifndef PAGEZERO_HACK
526 cebix 1.1 // Create Low Memory area (0x0000..0x3000)
527 gbeauche 1.4 if (vm_acquire_fixed((char *)0, 0x3000) < 0) {
528 cebix 1.1 sprintf(str, GetString(STR_LOW_MEM_MMAP_ERR), strerror(errno));
529     ErrorAlert(str);
530     goto quit;
531     }
532     lm_area_mapped = true;
533 gbeauche 1.26 #endif
534 cebix 1.1
535     // Create areas for Kernel Data
536     kernel_area = shmget(IPC_PRIVATE, KERNEL_AREA_SIZE, 0600);
537     if (kernel_area == -1) {
538     sprintf(str, GetString(STR_KD_SHMGET_ERR), strerror(errno));
539     ErrorAlert(str);
540     goto quit;
541     }
542     if (shmat(kernel_area, (void *)KERNEL_DATA_BASE, 0) < 0) {
543     sprintf(str, GetString(STR_KD_SHMAT_ERR), strerror(errno));
544     ErrorAlert(str);
545     goto quit;
546     }
547     if (shmat(kernel_area, (void *)KERNEL_DATA2_BASE, 0) < 0) {
548     sprintf(str, GetString(STR_KD2_SHMAT_ERR), strerror(errno));
549     ErrorAlert(str);
550     goto quit;
551     }
552 gbeauche 1.15 kernel_data = (KernelData *)KERNEL_DATA_BASE;
553 cebix 1.1 emulator_data = &kernel_data->ed;
554 gbeauche 1.15 KernelDataAddr = KERNEL_DATA_BASE;
555 cebix 1.1 D(bug("Kernel Data at %p, Emulator Data at %p\n", kernel_data, emulator_data));
556    
557 gbeauche 1.8 // Create area for SheepShaver data
558 gbeauche 1.15 if (!SheepMem::Init()) {
559 gbeauche 1.8 sprintf(str, GetString(STR_SHEEP_MEM_MMAP_ERR), strerror(errno));
560     ErrorAlert(str);
561     goto quit;
562     }
563    
564 cebix 1.1 // Create area for Mac ROM
565 gbeauche 1.4 if (vm_acquire_fixed((char *)ROM_BASE, ROM_AREA_SIZE) < 0) {
566 cebix 1.1 sprintf(str, GetString(STR_ROM_MMAP_ERR), strerror(errno));
567     ErrorAlert(str);
568     goto quit;
569     }
570 gbeauche 1.27 #if !EMULATED_PPC
571 gbeauche 1.4 if (vm_protect((char *)ROM_BASE, ROM_AREA_SIZE, VM_PAGE_READ | VM_PAGE_WRITE | VM_PAGE_EXECUTE) < 0) {
572     sprintf(str, GetString(STR_ROM_MMAP_ERR), strerror(errno));
573     ErrorAlert(str);
574     goto quit;
575     }
576     #endif
577 cebix 1.1 rom_area_mapped = true;
578     D(bug("ROM area at %08x\n", ROM_BASE));
579    
580     // Create area for Mac RAM
581     RAMSize = PrefsFindInt32("ramsize");
582     if (RAMSize < 8*1024*1024) {
583     WarningAlert(GetString(STR_SMALL_RAM_WARN));
584     RAMSize = 8*1024*1024;
585     }
586    
587 gbeauche 1.8 if (vm_acquire_fixed((char *)RAM_BASE, RAMSize) < 0) {
588 cebix 1.1 sprintf(str, GetString(STR_RAM_MMAP_ERR), strerror(errno));
589     ErrorAlert(str);
590     goto quit;
591     }
592 gbeauche 1.4 #if !EMULATED_PPC
593 gbeauche 1.8 if (vm_protect((char *)RAM_BASE, RAMSize, VM_PAGE_READ | VM_PAGE_WRITE | VM_PAGE_EXECUTE) < 0) {
594 gbeauche 1.4 sprintf(str, GetString(STR_RAM_MMAP_ERR), strerror(errno));
595     ErrorAlert(str);
596     goto quit;
597     }
598     #endif
599 gbeauche 1.8 RAMBase = RAM_BASE;
600 cebix 1.1 ram_area_mapped = true;
601     D(bug("RAM area at %08x\n", RAMBase));
602    
603     if (RAMBase > ROM_BASE) {
604     ErrorAlert(GetString(STR_RAM_HIGHER_THAN_ROM_ERR));
605     goto quit;
606     }
607    
608     // Load Mac ROM
609     rom_path = PrefsFindString("rom");
610     rom_fd = open(rom_path ? rom_path : ROM_FILE_NAME, O_RDONLY);
611     if (rom_fd < 0) {
612     rom_fd = open(rom_path ? rom_path : ROM_FILE_NAME2, O_RDONLY);
613     if (rom_fd < 0) {
614     ErrorAlert(GetString(STR_NO_ROM_FILE_ERR));
615     goto quit;
616     }
617     }
618     printf(GetString(STR_READING_ROM_FILE));
619     rom_size = lseek(rom_fd, 0, SEEK_END);
620     lseek(rom_fd, 0, SEEK_SET);
621     rom_tmp = new uint8[ROM_SIZE];
622     actual = read(rom_fd, (void *)rom_tmp, ROM_SIZE);
623     close(rom_fd);
624 gbeauche 1.3
625     // Decode Mac ROM
626     if (!DecodeROM(rom_tmp, actual)) {
627     if (rom_size != 4*1024*1024) {
628 cebix 1.1 ErrorAlert(GetString(STR_ROM_SIZE_ERR));
629     goto quit;
630     } else {
631     ErrorAlert(GetString(STR_ROM_FILE_READ_ERR));
632     goto quit;
633     }
634     }
635 gbeauche 1.3 delete[] rom_tmp;
636 cebix 1.1
637     // Load NVRAM
638     XPRAMInit();
639    
640     // Set boot volume
641 cebix 1.10 i16 = PrefsFindInt32("bootdrive");
642 cebix 1.1 XPRAM[0x1378] = i16 >> 8;
643     XPRAM[0x1379] = i16 & 0xff;
644 cebix 1.10 i16 = PrefsFindInt32("bootdriver");
645 cebix 1.1 XPRAM[0x137a] = i16 >> 8;
646     XPRAM[0x137b] = i16 & 0xff;
647    
648     // Create BootGlobs at top of Mac memory
649     memset((void *)(RAMBase + RAMSize - 4096), 0, 4096);
650     BootGlobsAddr = RAMBase + RAMSize - 0x1c;
651     boot_globs = (uint32 *)BootGlobsAddr;
652     boot_globs[-5] = htonl(RAMBase + RAMSize); // MemTop
653     boot_globs[0] = htonl(RAMBase); // First RAM bank
654     boot_globs[1] = htonl(RAMSize);
655     boot_globs[2] = htonl((uint32)-1); // End of bank table
656    
657 gbeauche 1.15 // Init thunks
658     if (!ThunksInit())
659     goto quit;
660    
661 cebix 1.1 // Init drivers
662     SonyInit();
663     DiskInit();
664     CDROMInit();
665     SCSIInit();
666    
667     // Init external file system
668     ExtFSInit();
669    
670 gbeauche 1.22 // Init ADB
671     ADBInit();
672    
673 cebix 1.1 // Init audio
674     AudioInit();
675    
676     // Init network
677     EtherInit();
678    
679     // Init serial ports
680     SerialInit();
681    
682     // Init Time Manager
683     TimerInit();
684    
685     // Init clipboard
686     ClipInit();
687    
688     // Init video
689     if (!VideoInit())
690     goto quit;
691    
692     // Install ROM patches
693     if (!PatchROM()) {
694     ErrorAlert(GetString(STR_UNSUPPORTED_ROM_TYPE_ERR));
695     goto quit;
696     }
697    
698     // Clear caches (as we loaded and patched code) and write protect ROM
699     #if !EMULATED_PPC
700     MakeExecutable(0, (void *)ROM_BASE, ROM_AREA_SIZE);
701     #endif
702 gbeauche 1.4 vm_protect((char *)ROM_BASE, ROM_AREA_SIZE, VM_PAGE_READ | VM_PAGE_EXECUTE);
703 cebix 1.1
704     // Initialize Kernel Data
705     memset(kernel_data, 0, sizeof(KernelData));
706     if (ROMType == ROMTYPE_NEWWORLD) {
707 gbeauche 1.15 uintptr of_dev_tree = SheepMem::Reserve(4 * sizeof(uint32));
708     memset((void *)of_dev_tree, 0, 4 * sizeof(uint32));
709     uintptr vector_lookup_tbl = SheepMem::Reserve(128);
710     uintptr vector_mask_tbl = SheepMem::Reserve(64);
711 cebix 1.1 memset((uint8 *)kernel_data + 0xb80, 0x3d, 0x80);
712 gbeauche 1.15 memset((void *)vector_lookup_tbl, 0, 128);
713     memset((void *)vector_mask_tbl, 0, 64);
714 cebix 1.1 kernel_data->v[0xb80 >> 2] = htonl(ROM_BASE);
715 gbeauche 1.15 kernel_data->v[0xb84 >> 2] = htonl(of_dev_tree); // OF device tree base
716     kernel_data->v[0xb90 >> 2] = htonl(vector_lookup_tbl);
717     kernel_data->v[0xb94 >> 2] = htonl(vector_mask_tbl);
718 cebix 1.1 kernel_data->v[0xb98 >> 2] = htonl(ROM_BASE); // OpenPIC base
719     kernel_data->v[0xbb0 >> 2] = htonl(0); // ADB base
720     kernel_data->v[0xc20 >> 2] = htonl(RAMSize);
721     kernel_data->v[0xc24 >> 2] = htonl(RAMSize);
722     kernel_data->v[0xc30 >> 2] = htonl(RAMSize);
723     kernel_data->v[0xc34 >> 2] = htonl(RAMSize);
724     kernel_data->v[0xc38 >> 2] = htonl(0x00010020);
725     kernel_data->v[0xc3c >> 2] = htonl(0x00200001);
726     kernel_data->v[0xc40 >> 2] = htonl(0x00010000);
727     kernel_data->v[0xc50 >> 2] = htonl(RAMBase);
728     kernel_data->v[0xc54 >> 2] = htonl(RAMSize);
729     kernel_data->v[0xf60 >> 2] = htonl(PVR);
730     kernel_data->v[0xf64 >> 2] = htonl(CPUClockSpeed);
731     kernel_data->v[0xf68 >> 2] = htonl(BusClockSpeed);
732     kernel_data->v[0xf6c >> 2] = htonl(CPUClockSpeed);
733     } else {
734     kernel_data->v[0xc80 >> 2] = htonl(RAMSize);
735     kernel_data->v[0xc84 >> 2] = htonl(RAMSize);
736     kernel_data->v[0xc90 >> 2] = htonl(RAMSize);
737     kernel_data->v[0xc94 >> 2] = htonl(RAMSize);
738     kernel_data->v[0xc98 >> 2] = htonl(0x00010020);
739     kernel_data->v[0xc9c >> 2] = htonl(0x00200001);
740     kernel_data->v[0xca0 >> 2] = htonl(0x00010000);
741     kernel_data->v[0xcb0 >> 2] = htonl(RAMBase);
742     kernel_data->v[0xcb4 >> 2] = htonl(RAMSize);
743     kernel_data->v[0xf80 >> 2] = htonl(PVR);
744     kernel_data->v[0xf84 >> 2] = htonl(CPUClockSpeed);
745     kernel_data->v[0xf88 >> 2] = htonl(BusClockSpeed);
746     kernel_data->v[0xf8c >> 2] = htonl(CPUClockSpeed);
747     }
748    
749     // Initialize extra low memory
750     D(bug("Initializing Low Memory...\n"));
751     memset(NULL, 0, 0x3000);
752     WriteMacInt32(XLM_SIGNATURE, FOURCC('B','a','a','h')); // Signature to detect SheepShaver
753 gbeauche 1.15 WriteMacInt32(XLM_KERNEL_DATA, KernelDataAddr); // For trap replacement routines
754 cebix 1.1 WriteMacInt32(XLM_PVR, PVR); // Theoretical PVR
755     WriteMacInt32(XLM_BUS_CLOCK, BusClockSpeed); // For DriverServicesLib patch
756     WriteMacInt16(XLM_EXEC_RETURN_OPCODE, M68K_EXEC_RETURN); // For Execute68k() (RTS from the executed 68k code will jump here and end 68k mode)
757 gbeauche 1.18 WriteMacInt32(XLM_ZERO_PAGE, SheepMem::ZeroPage()); // Pointer to read-only page with all bits set to 0
758 gbeauche 1.17 #if !EMULATED_PPC
759     WriteMacInt32(XLM_TOC, (uint32)TOC); // TOC pointer of emulator
760     #endif
761     WriteMacInt32(XLM_ETHER_INIT, NativeFunction(NATIVE_ETHER_INIT)); // DLPI ethernet driver functions
762 gbeauche 1.15 WriteMacInt32(XLM_ETHER_TERM, NativeFunction(NATIVE_ETHER_TERM));
763     WriteMacInt32(XLM_ETHER_OPEN, NativeFunction(NATIVE_ETHER_OPEN));
764     WriteMacInt32(XLM_ETHER_CLOSE, NativeFunction(NATIVE_ETHER_CLOSE));
765     WriteMacInt32(XLM_ETHER_WPUT, NativeFunction(NATIVE_ETHER_WPUT));
766     WriteMacInt32(XLM_ETHER_RSRV, NativeFunction(NATIVE_ETHER_RSRV));
767     WriteMacInt32(XLM_VIDEO_DOIO, NativeFunction(NATIVE_VIDEO_DO_DRIVER_IO));
768 cebix 1.1 D(bug("Low Memory initialized\n"));
769    
770     // Start 60Hz thread
771     tick_thread_active = (pthread_create(&tick_thread, NULL, tick_func, NULL) == 0);
772     D(bug("Tick thread installed (%ld)\n", tick_thread));
773    
774     // Start NVRAM watchdog thread
775     memcpy(last_xpram, XPRAM, XPRAM_SIZE);
776     nvram_thread_active = (pthread_create(&nvram_thread, NULL, nvram_func, NULL) == 0);
777     D(bug("NVRAM thread installed (%ld)\n", nvram_thread));
778    
779     #if !EMULATED_PPC
780     // Create and install stacks for signal handlers
781     sig_stack = malloc(SIG_STACK_SIZE);
782     D(bug("Signal stack at %p\n", sig_stack));
783     if (sig_stack == NULL) {
784     ErrorAlert(GetString(STR_NOT_ENOUGH_MEMORY_ERR));
785     goto quit;
786     }
787     extra_stack = malloc(SIG_STACK_SIZE);
788     D(bug("Extra stack at %p\n", extra_stack));
789     if (extra_stack == NULL) {
790     ErrorAlert(GetString(STR_NOT_ENOUGH_MEMORY_ERR));
791     goto quit;
792     }
793     struct sigaltstack new_stack;
794     new_stack.ss_sp = sig_stack;
795     new_stack.ss_flags = 0;
796     new_stack.ss_size = SIG_STACK_SIZE;
797     if (sigaltstack(&new_stack, NULL) < 0) {
798     sprintf(str, GetString(STR_SIGALTSTACK_ERR), strerror(errno));
799     ErrorAlert(str);
800     goto quit;
801     }
802     #endif
803    
804     #if !EMULATED_PPC
805 gbeauche 1.23 // Install SIGSEGV and SIGBUS handlers
806 cebix 1.1 sigemptyset(&sigsegv_action.sa_mask); // Block interrupts during SEGV handling
807     sigaddset(&sigsegv_action.sa_mask, SIGUSR2);
808 gbeauche 1.26 sigsegv_action.sa_sigaction = sigsegv_handler;
809     sigsegv_action.sa_flags = SA_ONSTACK | SA_SIGINFO;
810     #ifdef HAVE_SIGNAL_SA_RESTORER
811 cebix 1.1 sigsegv_action.sa_restorer = NULL;
812 gbeauche 1.26 #endif
813 cebix 1.1 if (sigaction(SIGSEGV, &sigsegv_action, NULL) < 0) {
814     sprintf(str, GetString(STR_SIGSEGV_INSTALL_ERR), strerror(errno));
815     ErrorAlert(str);
816     goto quit;
817     }
818 gbeauche 1.23 if (sigaction(SIGBUS, &sigsegv_action, NULL) < 0) {
819     sprintf(str, GetString(STR_SIGSEGV_INSTALL_ERR), strerror(errno));
820     ErrorAlert(str);
821     goto quit;
822     }
823 cebix 1.1
824     // Install SIGILL handler
825     sigemptyset(&sigill_action.sa_mask); // Block interrupts during ILL handling
826     sigaddset(&sigill_action.sa_mask, SIGUSR2);
827 gbeauche 1.26 sigill_action.sa_sigaction = sigill_handler;
828     sigill_action.sa_flags = SA_ONSTACK | SA_SIGINFO;
829     #ifdef HAVE_SIGNAL_SA_RESTORER
830 cebix 1.1 sigill_action.sa_restorer = NULL;
831 gbeauche 1.26 #endif
832 cebix 1.1 if (sigaction(SIGILL, &sigill_action, NULL) < 0) {
833     sprintf(str, GetString(STR_SIGILL_INSTALL_ERR), strerror(errno));
834     ErrorAlert(str);
835     goto quit;
836     }
837 gbeauche 1.6 #endif
838 cebix 1.1
839 gbeauche 1.26 #if !EMULATED_PPC
840 cebix 1.1 // Install interrupt signal handler
841     sigemptyset(&sigusr2_action.sa_mask);
842 gbeauche 1.26 sigusr2_action.sa_sigaction = sigusr2_handler;
843     sigusr2_action.sa_flags = SA_ONSTACK | SA_RESTART | SA_SIGINFO;
844     #ifdef HAVE_SIGNAL_SA_RESTORER
845     sigusr2_action.sa_restorer = NULL;
846 gbeauche 1.8 #endif
847 cebix 1.1 if (sigaction(SIGUSR2, &sigusr2_action, NULL) < 0) {
848     sprintf(str, GetString(STR_SIGUSR2_INSTALL_ERR), strerror(errno));
849     ErrorAlert(str);
850     goto quit;
851     }
852 gbeauche 1.26 #endif
853 cebix 1.1
854     // Get my thread ID and execute MacOS thread function
855     emul_thread = pthread_self();
856     D(bug("MacOS thread is %ld\n", emul_thread));
857     emul_func(NULL);
858    
859     quit:
860     Quit();
861     return 0;
862     }
863    
864    
865     /*
866     * Cleanup and quit
867     */
868    
869     static void Quit(void)
870     {
871 gbeauche 1.13 #if EMULATED_PPC
872     // Exit PowerPC emulation
873     exit_emul_ppc();
874     #endif
875    
876 cebix 1.1 // Stop 60Hz thread
877     if (tick_thread_active) {
878     pthread_cancel(tick_thread);
879     pthread_join(tick_thread, NULL);
880     }
881    
882     // Stop NVRAM watchdog thread
883     if (nvram_thread_active) {
884     pthread_cancel(nvram_thread);
885     pthread_join(nvram_thread, NULL);
886     }
887    
888     #if !EMULATED_PPC
889 gbeauche 1.23 // Uninstall SIGSEGV and SIGBUS handlers
890 cebix 1.1 sigemptyset(&sigsegv_action.sa_mask);
891     sigsegv_action.sa_handler = SIG_DFL;
892     sigsegv_action.sa_flags = 0;
893     sigaction(SIGSEGV, &sigsegv_action, NULL);
894 gbeauche 1.23 sigaction(SIGBUS, &sigsegv_action, NULL);
895 cebix 1.1
896     // Uninstall SIGILL handler
897     sigemptyset(&sigill_action.sa_mask);
898     sigill_action.sa_handler = SIG_DFL;
899     sigill_action.sa_flags = 0;
900     sigaction(SIGILL, &sigill_action, NULL);
901     #endif
902    
903     // Save NVRAM
904     XPRAMExit();
905    
906     // Exit clipboard
907     ClipExit();
908    
909     // Exit Time Manager
910     TimerExit();
911    
912     // Exit serial
913     SerialExit();
914    
915     // Exit network
916     EtherExit();
917    
918     // Exit audio
919     AudioExit();
920 gbeauche 1.22
921     // Exit ADB
922     ADBExit();
923 cebix 1.1
924     // Exit video
925     VideoExit();
926    
927     // Exit external file system
928     ExtFSExit();
929    
930     // Exit drivers
931     SCSIExit();
932     CDROMExit();
933     DiskExit();
934     SonyExit();
935    
936 gbeauche 1.24 // Delete thunks
937     ThunksExit();
938    
939 gbeauche 1.15 // Delete SheepShaver globals
940     SheepMem::Exit();
941    
942 cebix 1.1 // Delete RAM area
943     if (ram_area_mapped)
944 gbeauche 1.8 vm_release((char *)RAM_BASE, RAMSize);
945 cebix 1.1
946     // Delete ROM area
947     if (rom_area_mapped)
948 gbeauche 1.4 vm_release((char *)ROM_BASE, ROM_AREA_SIZE);
949 cebix 1.1
950     // Delete Kernel Data area
951     if (kernel_area >= 0) {
952     shmdt((void *)KERNEL_DATA_BASE);
953     shmdt((void *)KERNEL_DATA2_BASE);
954     shmctl(kernel_area, IPC_RMID, NULL);
955     }
956    
957     // Delete Low Memory area
958     if (lm_area_mapped)
959     munmap((char *)0x0000, 0x3000);
960    
961     // Close /dev/zero
962     if (zero_fd > 0)
963     close(zero_fd);
964    
965     // Exit system routines
966     SysExit();
967    
968     // Exit preferences
969     PrefsExit();
970    
971     #ifdef ENABLE_MON
972     // Exit mon
973     mon_exit();
974     #endif
975    
976     // Close X11 server connection
977     if (x_display)
978     XCloseDisplay(x_display);
979    
980     exit(0);
981     }
982    
983    
984     /*
985     * Jump into Mac ROM, start 680x0 emulator
986     */
987    
988     #if EMULATED_PPC
989     void jump_to_rom(uint32 entry)
990     {
991     init_emul_ppc();
992     emul_ppc(entry);
993     }
994     #endif
995    
996    
997     /*
998     * Emulator thread function
999     */
1000    
1001     static void *emul_func(void *arg)
1002     {
1003     // We're now ready to receive signals
1004     ready_for_signals = true;
1005    
1006     // Decrease priority, so more time-critical things like audio will work better
1007     nice(1);
1008    
1009     // Jump to ROM boot routine
1010     D(bug("Jumping to ROM\n"));
1011     #if EMULATED_PPC
1012     jump_to_rom(ROM_BASE + 0x310000);
1013     #else
1014     jump_to_rom(ROM_BASE + 0x310000, (uint32)emulator_data);
1015     #endif
1016     D(bug("Returned from ROM\n"));
1017    
1018     // We're no longer ready to receive signals
1019     ready_for_signals = false;
1020     return NULL;
1021     }
1022    
1023    
1024     #if !EMULATED_PPC
1025     /*
1026     * Execute 68k subroutine (must be ended with RTS)
1027     * This must only be called by the emul_thread when in EMUL_OP mode
1028     * r->a[7] is unused, the routine runs on the caller's stack
1029     */
1030    
1031     void Execute68k(uint32 pc, M68kRegisters *r)
1032     {
1033     #if SAFE_EXEC_68K
1034     if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
1035     printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
1036     if (!pthread_equal(pthread_self(), emul_thread))
1037     printf("FATAL: Execute68k() not called from emul_thread\n");
1038     #endif
1039     execute_68k(pc, r);
1040     }
1041    
1042    
1043     /*
1044     * Execute 68k A-Trap from EMUL_OP routine
1045     * r->a[7] is unused, the routine runs on the caller's stack
1046     */
1047    
1048     void Execute68kTrap(uint16 trap, M68kRegisters *r)
1049     {
1050     uint16 proc[2] = {trap, M68K_RTS};
1051     Execute68k((uint32)proc, r);
1052     }
1053 gbeauche 1.7 #endif
1054 cebix 1.1
1055    
1056     /*
1057     * Quit emulator (cause return from jump_to_rom)
1058     */
1059    
1060     void QuitEmulator(void)
1061     {
1062     #if EMULATED_PPC
1063     Quit();
1064     #else
1065     quit_emulator();
1066     #endif
1067     }
1068    
1069    
1070     /*
1071     * Pause/resume emulator
1072     */
1073    
1074     void PauseEmulator(void)
1075     {
1076     pthread_kill(emul_thread, SIGSTOP);
1077     }
1078    
1079     void ResumeEmulator(void)
1080     {
1081     pthread_kill(emul_thread, SIGCONT);
1082     }
1083    
1084    
1085     /*
1086     * Dump 68k registers
1087     */
1088    
1089     void Dump68kRegs(M68kRegisters *r)
1090     {
1091     // Display 68k registers
1092     for (int i=0; i<8; i++) {
1093     printf("d%d: %08x", i, r->d[i]);
1094     if (i == 3 || i == 7)
1095     printf("\n");
1096     else
1097     printf(", ");
1098     }
1099     for (int i=0; i<8; i++) {
1100     printf("a%d: %08x", i, r->a[i]);
1101     if (i == 3 || i == 7)
1102     printf("\n");
1103     else
1104     printf(", ");
1105     }
1106     }
1107    
1108    
1109     /*
1110     * Make code executable
1111     */
1112    
1113     void MakeExecutable(int dummy, void *start, uint32 length)
1114     {
1115 gbeauche 1.9 if (((uintptr)start >= ROM_BASE) && ((uintptr)start < (ROM_BASE + ROM_SIZE)))
1116 cebix 1.1 return;
1117 gbeauche 1.9 #if EMULATED_PPC
1118     FlushCodeCache((uintptr)start, (uintptr)start + length);
1119     #else
1120     flush_icache_range(start, (void *)((uintptr)start + length));
1121 cebix 1.1 #endif
1122     }
1123    
1124    
1125     /*
1126     * Patch things after system startup (gets called by disk driver accRun routine)
1127     */
1128    
1129     void PatchAfterStartup(void)
1130     {
1131 gbeauche 1.6 ExecuteNative(NATIVE_VIDEO_INSTALL_ACCEL);
1132 cebix 1.1 InstallExtFS();
1133     }
1134    
1135    
1136     /*
1137     * NVRAM watchdog thread (saves NVRAM every minute)
1138     */
1139    
1140     static void *nvram_func(void *arg)
1141     {
1142     struct timespec req = {60, 0}; // 1 minute
1143    
1144     for (;;) {
1145     pthread_testcancel();
1146     nanosleep(&req, NULL);
1147     pthread_testcancel();
1148     if (memcmp(last_xpram, XPRAM, XPRAM_SIZE)) {
1149     memcpy(last_xpram, XPRAM, XPRAM_SIZE);
1150     SaveXPRAM();
1151     }
1152     }
1153     return NULL;
1154     }
1155    
1156    
1157     /*
1158     * 60Hz thread (really 60.15Hz)
1159     */
1160    
1161     static void *tick_func(void *arg)
1162     {
1163     int tick_counter = 0;
1164     struct timespec req = {0, 16625000};
1165    
1166     for (;;) {
1167    
1168     // Wait
1169     nanosleep(&req, NULL);
1170    
1171     #if !EMULATED_PPC
1172     // Did we crash?
1173     if (emul_thread_fatal) {
1174    
1175     // Yes, dump registers
1176 gbeauche 1.26 sigregs *r = &sigsegv_regs;
1177 cebix 1.1 char str[256];
1178 gbeauche 1.23 if (crash_reason == NULL)
1179     crash_reason = "SIGSEGV";
1180     sprintf(str, "%s\n"
1181 cebix 1.1 " pc %08lx lr %08lx ctr %08lx msr %08lx\n"
1182     " xer %08lx cr %08lx \n"
1183     " r0 %08lx r1 %08lx r2 %08lx r3 %08lx\n"
1184     " r4 %08lx r5 %08lx r6 %08lx r7 %08lx\n"
1185     " r8 %08lx r9 %08lx r10 %08lx r11 %08lx\n"
1186     " r12 %08lx r13 %08lx r14 %08lx r15 %08lx\n"
1187     " r16 %08lx r17 %08lx r18 %08lx r19 %08lx\n"
1188     " r20 %08lx r21 %08lx r22 %08lx r23 %08lx\n"
1189     " r24 %08lx r25 %08lx r26 %08lx r27 %08lx\n"
1190     " r28 %08lx r29 %08lx r30 %08lx r31 %08lx\n",
1191 gbeauche 1.23 crash_reason,
1192 cebix 1.1 r->nip, r->link, r->ctr, r->msr,
1193     r->xer, r->ccr,
1194     r->gpr[0], r->gpr[1], r->gpr[2], r->gpr[3],
1195     r->gpr[4], r->gpr[5], r->gpr[6], r->gpr[7],
1196     r->gpr[8], r->gpr[9], r->gpr[10], r->gpr[11],
1197     r->gpr[12], r->gpr[13], r->gpr[14], r->gpr[15],
1198     r->gpr[16], r->gpr[17], r->gpr[18], r->gpr[19],
1199     r->gpr[20], r->gpr[21], r->gpr[22], r->gpr[23],
1200     r->gpr[24], r->gpr[25], r->gpr[26], r->gpr[27],
1201     r->gpr[28], r->gpr[29], r->gpr[30], r->gpr[31]);
1202     printf(str);
1203     VideoQuitFullScreen();
1204    
1205     #ifdef ENABLE_MON
1206     // Start up mon in real-mode
1207     printf("Welcome to the sheep factory.\n");
1208     char *arg[4] = {"mon", "-m", "-r", NULL};
1209     mon(3, arg);
1210     #endif
1211     return NULL;
1212     }
1213     #endif
1214    
1215     // Pseudo Mac 1Hz interrupt, update local time
1216     if (++tick_counter > 60) {
1217     tick_counter = 0;
1218     WriteMacInt32(0x20c, TimerDateTime());
1219     }
1220    
1221     // Trigger 60Hz interrupt
1222     if (ReadMacInt32(XLM_IRQ_NEST) == 0) {
1223     SetInterruptFlag(INTFLAG_VIA);
1224     TriggerInterrupt();
1225     }
1226     }
1227     return NULL;
1228     }
1229    
1230    
1231     /*
1232 cebix 1.2 * Pthread configuration
1233     */
1234    
1235     void Set_pthread_attr(pthread_attr_t *attr, int priority)
1236     {
1237 gbeauche 1.14 #ifdef HAVE_PTHREADS
1238     pthread_attr_init(attr);
1239     #if defined(_POSIX_THREAD_PRIORITY_SCHEDULING)
1240     // Some of these only work for superuser
1241     if (geteuid() == 0) {
1242     pthread_attr_setinheritsched(attr, PTHREAD_EXPLICIT_SCHED);
1243     pthread_attr_setschedpolicy(attr, SCHED_FIFO);
1244     struct sched_param fifo_param;
1245     fifo_param.sched_priority = ((sched_get_priority_min(SCHED_FIFO) +
1246     sched_get_priority_max(SCHED_FIFO)) / 2 +
1247     priority);
1248     pthread_attr_setschedparam(attr, &fifo_param);
1249     }
1250     if (pthread_attr_setscope(attr, PTHREAD_SCOPE_SYSTEM) != 0) {
1251     #ifdef PTHREAD_SCOPE_BOUND_NP
1252     // If system scope is not available (eg. we're not running
1253     // with CAP_SCHED_MGT capability on an SGI box), try bound
1254     // scope. It exposes pthread scheduling to the kernel,
1255     // without setting realtime priority.
1256     pthread_attr_setscope(attr, PTHREAD_SCOPE_BOUND_NP);
1257     #endif
1258     }
1259     #endif
1260     #endif
1261 cebix 1.2 }
1262    
1263    
1264     /*
1265 cebix 1.1 * Mutexes
1266     */
1267    
1268 gbeauche 1.7 #ifdef HAVE_PTHREADS
1269    
1270     struct B2_mutex {
1271     B2_mutex() {
1272     pthread_mutexattr_t attr;
1273     pthread_mutexattr_init(&attr);
1274     // Initialize the mutex for priority inheritance --
1275     // required for accurate timing.
1276     #ifdef HAVE_PTHREAD_MUTEXATTR_SETPROTOCOL
1277     pthread_mutexattr_setprotocol(&attr, PTHREAD_PRIO_INHERIT);
1278     #endif
1279     #if defined(HAVE_PTHREAD_MUTEXATTR_SETTYPE) && defined(PTHREAD_MUTEX_NORMAL)
1280     pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL);
1281     #endif
1282     #ifdef HAVE_PTHREAD_MUTEXATTR_SETPSHARED
1283     pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_PRIVATE);
1284     #endif
1285     pthread_mutex_init(&m, &attr);
1286     pthread_mutexattr_destroy(&attr);
1287     }
1288     ~B2_mutex() {
1289     pthread_mutex_trylock(&m); // Make sure it's locked before
1290     pthread_mutex_unlock(&m); // unlocking it.
1291     pthread_mutex_destroy(&m);
1292     }
1293     pthread_mutex_t m;
1294     };
1295    
1296     B2_mutex *B2_create_mutex(void)
1297     {
1298     return new B2_mutex;
1299     }
1300    
1301     void B2_lock_mutex(B2_mutex *mutex)
1302     {
1303     pthread_mutex_lock(&mutex->m);
1304     }
1305    
1306     void B2_unlock_mutex(B2_mutex *mutex)
1307     {
1308     pthread_mutex_unlock(&mutex->m);
1309     }
1310    
1311     void B2_delete_mutex(B2_mutex *mutex)
1312     {
1313     delete mutex;
1314     }
1315    
1316     #else
1317    
1318 cebix 1.1 struct B2_mutex {
1319     int dummy;
1320     };
1321    
1322     B2_mutex *B2_create_mutex(void)
1323     {
1324     return new B2_mutex;
1325     }
1326    
1327     void B2_lock_mutex(B2_mutex *mutex)
1328     {
1329     }
1330    
1331     void B2_unlock_mutex(B2_mutex *mutex)
1332     {
1333     }
1334    
1335     void B2_delete_mutex(B2_mutex *mutex)
1336     {
1337     delete mutex;
1338     }
1339    
1340 gbeauche 1.7 #endif
1341    
1342 cebix 1.1
1343     /*
1344     * Trigger signal USR2 from another thread
1345     */
1346    
1347 gbeauche 1.8 #if !EMULATED_PPC || ASYNC_IRQ
1348 cebix 1.1 void TriggerInterrupt(void)
1349     {
1350     if (ready_for_signals)
1351     pthread_kill(emul_thread, SIGUSR2);
1352     }
1353 gbeauche 1.7 #endif
1354 cebix 1.1
1355    
1356     /*
1357     * Interrupt flags (must be handled atomically!)
1358     */
1359    
1360     volatile uint32 InterruptFlags = 0;
1361    
1362     void SetInterruptFlag(uint32 flag)
1363     {
1364     atomic_or((int *)&InterruptFlags, flag);
1365     }
1366    
1367     void ClearInterruptFlag(uint32 flag)
1368     {
1369     atomic_and((int *)&InterruptFlags, ~flag);
1370     }
1371    
1372    
1373     /*
1374     * Disable interrupts
1375     */
1376    
1377     void DisableInterrupt(void)
1378     {
1379 gbeauche 1.7 atomic_add((int *)XLM_IRQ_NEST, 1);
1380 cebix 1.1 }
1381    
1382    
1383     /*
1384     * Enable interrupts
1385     */
1386    
1387     void EnableInterrupt(void)
1388     {
1389 gbeauche 1.7 atomic_add((int *)XLM_IRQ_NEST, -1);
1390 cebix 1.1 }
1391    
1392    
1393     /*
1394     * USR2 handler
1395     */
1396    
1397 gbeauche 1.8 #if EMULATED_PPC
1398     static void sigusr2_handler(int sig)
1399     {
1400     #if ASYNC_IRQ
1401     extern void HandleInterrupt(void);
1402     HandleInterrupt();
1403     #endif
1404     }
1405     #else
1406 gbeauche 1.26 static void sigusr2_handler(int sig, siginfo_t *sip, void *scp)
1407 cebix 1.1 {
1408 gbeauche 1.26 machine_regs *r = MACHINE_REGISTERS(scp);
1409 cebix 1.1
1410     // Do nothing if interrupts are disabled
1411     if (*(int32 *)XLM_IRQ_NEST > 0)
1412     return;
1413    
1414     // Disable MacOS stack sniffer
1415     WriteMacInt32(0x110, 0);
1416    
1417     // Interrupt action depends on current run mode
1418     switch (ReadMacInt32(XLM_RUN_MODE)) {
1419     case MODE_68K:
1420     // 68k emulator active, trigger 68k interrupt level 1
1421     WriteMacInt16(ntohl(kernel_data->v[0x67c >> 2]), 1);
1422 gbeauche 1.26 r->cr() |= ntohl(kernel_data->v[0x674 >> 2]);
1423 cebix 1.1 break;
1424    
1425     #if INTERRUPTS_IN_NATIVE_MODE
1426     case MODE_NATIVE:
1427     // 68k emulator inactive, in nanokernel?
1428 gbeauche 1.26 if (r->gpr(1) != KernelDataAddr) {
1429 cebix 1.1 // Prepare for 68k interrupt level 1
1430     WriteMacInt16(ntohl(kernel_data->v[0x67c >> 2]), 1);
1431     WriteMacInt32(ntohl(kernel_data->v[0x658 >> 2]) + 0xdc, ReadMacInt32(ntohl(kernel_data->v[0x658 >> 2]) + 0xdc) | ntohl(kernel_data->v[0x674 >> 2]));
1432    
1433     // Execute nanokernel interrupt routine (this will activate the 68k emulator)
1434     atomic_add((int32 *)XLM_IRQ_NEST, 1);
1435     if (ROMType == ROMTYPE_NEWWORLD)
1436     ppc_interrupt(ROM_BASE + 0x312b1c, KernelDataAddr);
1437     else
1438     ppc_interrupt(ROM_BASE + 0x312a3c, KernelDataAddr);
1439     }
1440     break;
1441     #endif
1442    
1443     #if INTERRUPTS_IN_EMUL_OP_MODE
1444     case MODE_EMUL_OP:
1445     // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
1446     if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
1447    
1448     // Set extra stack for SIGSEGV handler
1449     struct sigaltstack new_stack;
1450     new_stack.ss_sp = extra_stack;
1451     new_stack.ss_flags = 0;
1452     new_stack.ss_size = SIG_STACK_SIZE;
1453     sigaltstack(&new_stack, NULL);
1454     #if 1
1455     // Execute full 68k interrupt routine
1456     M68kRegisters r;
1457     uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
1458     WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
1459     static const uint16 proc[] = {
1460     0x3f3c, 0x0000, // move.w #$0000,-(sp) (fake format word)
1461     0x487a, 0x000a, // pea @1(pc) (return address)
1462     0x40e7, // move sr,-(sp) (saved SR)
1463     0x2078, 0x0064, // move.l $64,a0
1464     0x4ed0, // jmp (a0)
1465     M68K_RTS // @1
1466     };
1467     Execute68k((uint32)proc, &r);
1468     WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
1469     #else
1470     // Only update cursor
1471     if (HasMacStarted()) {
1472     if (InterruptFlags & INTFLAG_VIA) {
1473     ClearInterruptFlag(INTFLAG_VIA);
1474     ADBInterrupt();
1475 gbeauche 1.17 ExecuteNative(NATIVE_VIDEO_VBL);
1476 cebix 1.1 }
1477     }
1478     #endif
1479     // Reset normal signal stack
1480     new_stack.ss_sp = sig_stack;
1481     new_stack.ss_flags = 0;
1482     new_stack.ss_size = SIG_STACK_SIZE;
1483     sigaltstack(&new_stack, NULL);
1484     }
1485     break;
1486     #endif
1487     }
1488     }
1489 gbeauche 1.8 #endif
1490 cebix 1.1
1491    
1492     /*
1493     * SIGSEGV handler
1494     */
1495    
1496 gbeauche 1.8 #if !EMULATED_PPC
1497 gbeauche 1.26 static void sigsegv_handler(int sig, siginfo_t *sip, void *scp)
1498 cebix 1.1 {
1499 gbeauche 1.26 machine_regs *r = MACHINE_REGISTERS(scp);
1500 gbeauche 1.5
1501     // Get effective address
1502 gbeauche 1.26 uint32 addr = r->dar();
1503 gbeauche 1.5
1504     #if ENABLE_VOSF
1505     // Handle screen fault.
1506     extern bool Screen_fault_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction);
1507 gbeauche 1.26 if (Screen_fault_handler((sigsegv_address_t)addr, (sigsegv_address_t)r->pc()))
1508 gbeauche 1.5 return;
1509     #endif
1510    
1511 cebix 1.1 num_segv++;
1512    
1513     // Fault in Mac ROM or RAM?
1514 gbeauche 1.26 bool mac_fault = (r->pc() >= ROM_BASE) && (r->pc() < (ROM_BASE + ROM_AREA_SIZE)) || (r->pc() >= RAMBase) && (r->pc() < (RAMBase + RAMSize));
1515 cebix 1.1 if (mac_fault) {
1516    
1517     // "VM settings" during MacOS 8 installation
1518 gbeauche 1.26 if (r->pc() == ROM_BASE + 0x488160 && r->gpr(20) == 0xf8000000) {
1519     r->pc() += 4;
1520     r->gpr(8) = 0;
1521 cebix 1.1 return;
1522    
1523     // MacOS 8.5 installation
1524 gbeauche 1.26 } else if (r->pc() == ROM_BASE + 0x488140 && r->gpr(16) == 0xf8000000) {
1525     r->pc() += 4;
1526     r->gpr(8) = 0;
1527 cebix 1.1 return;
1528    
1529     // MacOS 8 serial drivers on startup
1530 gbeauche 1.26 } else if (r->pc() == ROM_BASE + 0x48e080 && (r->gpr(8) == 0xf3012002 || r->gpr(8) == 0xf3012000)) {
1531     r->pc() += 4;
1532     r->gpr(8) = 0;
1533 cebix 1.1 return;
1534    
1535     // MacOS 8.1 serial drivers on startup
1536 gbeauche 1.26 } else if (r->pc() == ROM_BASE + 0x48c5e0 && (r->gpr(20) == 0xf3012002 || r->gpr(20) == 0xf3012000)) {
1537     r->pc() += 4;
1538 cebix 1.1 return;
1539 gbeauche 1.26 } else if (r->pc() == ROM_BASE + 0x4a10a0 && (r->gpr(20) == 0xf3012002 || r->gpr(20) == 0xf3012000)) {
1540     r->pc() += 4;
1541 cebix 1.1 return;
1542     }
1543    
1544 gbeauche 1.5 // Get opcode and divide into fields
1545 gbeauche 1.26 uint32 opcode = *((uint32 *)r->pc());
1546 gbeauche 1.5 uint32 primop = opcode >> 26;
1547     uint32 exop = (opcode >> 1) & 0x3ff;
1548     uint32 ra = (opcode >> 16) & 0x1f;
1549     uint32 rb = (opcode >> 11) & 0x1f;
1550     uint32 rd = (opcode >> 21) & 0x1f;
1551     int32 imm = (int16)(opcode & 0xffff);
1552    
1553 cebix 1.1 // Analyze opcode
1554     enum {
1555     TYPE_UNKNOWN,
1556     TYPE_LOAD,
1557     TYPE_STORE
1558     } transfer_type = TYPE_UNKNOWN;
1559     enum {
1560     SIZE_UNKNOWN,
1561     SIZE_BYTE,
1562     SIZE_HALFWORD,
1563     SIZE_WORD
1564     } transfer_size = SIZE_UNKNOWN;
1565     enum {
1566     MODE_UNKNOWN,
1567     MODE_NORM,
1568     MODE_U,
1569     MODE_X,
1570     MODE_UX
1571     } addr_mode = MODE_UNKNOWN;
1572     switch (primop) {
1573     case 31:
1574     switch (exop) {
1575     case 23: // lwzx
1576     transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
1577     case 55: // lwzux
1578     transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
1579     case 87: // lbzx
1580     transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
1581     case 119: // lbzux
1582     transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
1583     case 151: // stwx
1584     transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
1585     case 183: // stwux
1586     transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
1587     case 215: // stbx
1588     transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
1589     case 247: // stbux
1590     transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
1591     case 279: // lhzx
1592     transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_X; break;
1593     case 311: // lhzux
1594     transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_UX; break;
1595     case 343: // lhax
1596     transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_X; break;
1597     case 375: // lhaux
1598     transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_UX; break;
1599     case 407: // sthx
1600     transfer_type = TYPE_STORE; transfer_size = SIZE_HALFWORD; addr_mode = MODE_X; break;
1601     case 439: // sthux
1602     transfer_type = TYPE_STORE; transfer_size = SIZE_HALFWORD; addr_mode = MODE_UX; break;
1603     }
1604     break;
1605    
1606     case 32: // lwz
1607     transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
1608     case 33: // lwzu
1609     transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
1610     case 34: // lbz
1611     transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
1612     case 35: // lbzu
1613     transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
1614     case 36: // stw
1615     transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
1616     case 37: // stwu
1617     transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
1618     case 38: // stb
1619     transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
1620     case 39: // stbu
1621     transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
1622     case 40: // lhz
1623     transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_NORM; break;
1624     case 41: // lhzu
1625     transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_U; break;
1626     case 42: // lha
1627     transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_NORM; break;
1628     case 43: // lhau
1629     transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_U; break;
1630     case 44: // sth
1631     transfer_type = TYPE_STORE; transfer_size = SIZE_HALFWORD; addr_mode = MODE_NORM; break;
1632     case 45: // sthu
1633     transfer_type = TYPE_STORE; transfer_size = SIZE_HALFWORD; addr_mode = MODE_U; break;
1634 gbeauche 1.23 #if EMULATE_UNALIGNED_LOADSTORE_MULTIPLE
1635     case 46: // lmw
1636 gbeauche 1.27 if ((addr % 4) != 0) {
1637     uint32 ea = addr;
1638 gbeauche 1.26 D(bug("WARNING: unaligned lmw to EA=%08x from IP=%08x\n", ea, r->pc()));
1639 gbeauche 1.23 for (int i = rd; i <= 31; i++) {
1640 gbeauche 1.26 r->gpr(i) = ReadMacInt32(ea);
1641 gbeauche 1.23 ea += 4;
1642     }
1643 gbeauche 1.26 r->pc() += 4;
1644 gbeauche 1.23 goto rti;
1645     }
1646     break;
1647     case 47: // stmw
1648 gbeauche 1.27 if ((addr % 4) != 0) {
1649     uint32 ea = addr;
1650 gbeauche 1.26 D(bug("WARNING: unaligned stmw to EA=%08x from IP=%08x\n", ea, r->pc()));
1651 gbeauche 1.23 for (int i = rd; i <= 31; i++) {
1652 gbeauche 1.26 WriteMacInt32(ea, r->gpr(i));
1653 gbeauche 1.23 ea += 4;
1654     }
1655 gbeauche 1.26 r->pc() += 4;
1656 gbeauche 1.23 goto rti;
1657     }
1658     break;
1659     #endif
1660 cebix 1.1 }
1661    
1662     // Ignore ROM writes
1663     if (transfer_type == TYPE_STORE && addr >= ROM_BASE && addr < ROM_BASE + ROM_SIZE) {
1664 gbeauche 1.26 // D(bug("WARNING: %s write access to ROM at %08lx, pc %08lx\n", transfer_size == SIZE_BYTE ? "Byte" : transfer_size == SIZE_HALFWORD ? "Halfword" : "Word", addr, r->pc()));
1665 cebix 1.1 if (addr_mode == MODE_U || addr_mode == MODE_UX)
1666 gbeauche 1.26 r->gpr(ra) = addr;
1667     r->pc() += 4;
1668 cebix 1.1 goto rti;
1669     }
1670    
1671     // Ignore illegal memory accesses?
1672     if (PrefsFindBool("ignoresegv")) {
1673     if (addr_mode == MODE_U || addr_mode == MODE_UX)
1674 gbeauche 1.26 r->gpr(ra) = addr;
1675 cebix 1.1 if (transfer_type == TYPE_LOAD)
1676 gbeauche 1.26 r->gpr(rd) = 0;
1677     r->pc() += 4;
1678 cebix 1.1 goto rti;
1679     }
1680    
1681     // In GUI mode, show error alert
1682     if (!PrefsFindBool("nogui")) {
1683     char str[256];
1684     if (transfer_type == TYPE_LOAD || transfer_type == TYPE_STORE)
1685 gbeauche 1.26 sprintf(str, GetString(STR_MEM_ACCESS_ERR), transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_HALFWORD ? "halfword" : "word", transfer_type == TYPE_LOAD ? GetString(STR_MEM_ACCESS_READ) : GetString(STR_MEM_ACCESS_WRITE), addr, r->pc(), r->gpr(24), r->gpr(1));
1686 cebix 1.1 else
1687 gbeauche 1.26 sprintf(str, GetString(STR_UNKNOWN_SEGV_ERR), r->pc(), r->gpr(24), r->gpr(1), opcode);
1688 cebix 1.1 ErrorAlert(str);
1689     QuitEmulator();
1690     return;
1691     }
1692     }
1693    
1694     // For all other errors, jump into debugger (sort of...)
1695 gbeauche 1.23 crash_reason = (sig == SIGBUS) ? "SIGBUS" : "SIGSEGV";
1696 cebix 1.1 if (!ready_for_signals) {
1697 gbeauche 1.23 printf("%s\n");
1698 gbeauche 1.26 printf(" sigcontext %p, machine_regs %p\n", scp, r);
1699 cebix 1.1 printf(
1700     " pc %08lx lr %08lx ctr %08lx msr %08lx\n"
1701     " xer %08lx cr %08lx \n"
1702     " r0 %08lx r1 %08lx r2 %08lx r3 %08lx\n"
1703     " r4 %08lx r5 %08lx r6 %08lx r7 %08lx\n"
1704     " r8 %08lx r9 %08lx r10 %08lx r11 %08lx\n"
1705     " r12 %08lx r13 %08lx r14 %08lx r15 %08lx\n"
1706     " r16 %08lx r17 %08lx r18 %08lx r19 %08lx\n"
1707     " r20 %08lx r21 %08lx r22 %08lx r23 %08lx\n"
1708     " r24 %08lx r25 %08lx r26 %08lx r27 %08lx\n"
1709     " r28 %08lx r29 %08lx r30 %08lx r31 %08lx\n",
1710 gbeauche 1.23 crash_reason,
1711 gbeauche 1.26 r->pc(), r->lr(), r->ctr(), r->msr(),
1712     r->xer(), r->cr(),
1713     r->gpr(0), r->gpr(1), r->gpr(2), r->gpr(3),
1714     r->gpr(4), r->gpr(5), r->gpr(6), r->gpr(7),
1715     r->gpr(8), r->gpr(9), r->gpr(10), r->gpr(11),
1716     r->gpr(12), r->gpr(13), r->gpr(14), r->gpr(15),
1717     r->gpr(16), r->gpr(17), r->gpr(18), r->gpr(19),
1718     r->gpr(20), r->gpr(21), r->gpr(22), r->gpr(23),
1719     r->gpr(24), r->gpr(25), r->gpr(26), r->gpr(27),
1720     r->gpr(28), r->gpr(29), r->gpr(30), r->gpr(31));
1721 cebix 1.1 exit(1);
1722     QuitEmulator();
1723     return;
1724     } else {
1725     // We crashed. Save registers, tell tick thread and loop forever
1726 gbeauche 1.26 build_sigregs(&sigsegv_regs, r);
1727 cebix 1.1 emul_thread_fatal = true;
1728     for (;;) ;
1729     }
1730     rti:;
1731     }
1732    
1733    
1734     /*
1735     * SIGILL handler
1736     */
1737    
1738 gbeauche 1.26 static void sigill_handler(int sig, siginfo_t *sip, void *scp)
1739 cebix 1.1 {
1740 gbeauche 1.26 machine_regs *r = MACHINE_REGISTERS(scp);
1741 cebix 1.1 char str[256];
1742    
1743     // Fault in Mac ROM or RAM?
1744 gbeauche 1.26 bool mac_fault = (r->pc() >= ROM_BASE) && (r->pc() < (ROM_BASE + ROM_AREA_SIZE)) || (r->pc() >= RAMBase) && (r->pc() < (RAMBase + RAMSize));
1745 cebix 1.1 if (mac_fault) {
1746    
1747     // Get opcode and divide into fields
1748 gbeauche 1.26 uint32 opcode = *((uint32 *)r->pc());
1749 cebix 1.1 uint32 primop = opcode >> 26;
1750     uint32 exop = (opcode >> 1) & 0x3ff;
1751     uint32 ra = (opcode >> 16) & 0x1f;
1752     uint32 rb = (opcode >> 11) & 0x1f;
1753     uint32 rd = (opcode >> 21) & 0x1f;
1754     int32 imm = (int16)(opcode & 0xffff);
1755    
1756     switch (primop) {
1757     case 9: // POWER instructions
1758     case 22:
1759 gbeauche 1.26 power_inst: sprintf(str, GetString(STR_POWER_INSTRUCTION_ERR), r->pc(), r->gpr(1), opcode);
1760 cebix 1.1 ErrorAlert(str);
1761     QuitEmulator();
1762     return;
1763    
1764     case 31:
1765     switch (exop) {
1766     case 83: // mfmsr
1767 gbeauche 1.26 r->gpr(rd) = 0xf072;
1768     r->pc() += 4;
1769 cebix 1.1 goto rti;
1770    
1771     case 210: // mtsr
1772     case 242: // mtsrin
1773     case 306: // tlbie
1774 gbeauche 1.26 r->pc() += 4;
1775 cebix 1.1 goto rti;
1776    
1777     case 339: { // mfspr
1778     int spr = ra | (rb << 5);
1779     switch (spr) {
1780     case 0: // MQ
1781     case 22: // DEC
1782     case 952: // MMCR0
1783     case 953: // PMC1
1784     case 954: // PMC2
1785     case 955: // SIA
1786     case 956: // MMCR1
1787     case 957: // PMC3
1788     case 958: // PMC4
1789     case 959: // SDA
1790 gbeauche 1.26 r->pc() += 4;
1791 cebix 1.1 goto rti;
1792     case 25: // SDR1
1793 gbeauche 1.26 r->gpr(rd) = 0xdead001f;
1794     r->pc() += 4;
1795 cebix 1.1 goto rti;
1796     case 287: // PVR
1797 gbeauche 1.26 r->gpr(rd) = PVR;
1798     r->pc() += 4;
1799 cebix 1.1 goto rti;
1800     }
1801     break;
1802     }
1803    
1804     case 467: { // mtspr
1805     int spr = ra | (rb << 5);
1806     switch (spr) {
1807     case 0: // MQ
1808     case 22: // DEC
1809     case 275: // SPRG3
1810     case 528: // IBAT0U
1811     case 529: // IBAT0L
1812     case 530: // IBAT1U
1813     case 531: // IBAT1L
1814     case 532: // IBAT2U
1815     case 533: // IBAT2L
1816     case 534: // IBAT3U
1817     case 535: // IBAT3L
1818     case 536: // DBAT0U
1819     case 537: // DBAT0L
1820     case 538: // DBAT1U
1821     case 539: // DBAT1L
1822     case 540: // DBAT2U
1823     case 541: // DBAT2L
1824     case 542: // DBAT3U
1825     case 543: // DBAT3L
1826     case 952: // MMCR0
1827     case 953: // PMC1
1828     case 954: // PMC2
1829     case 955: // SIA
1830     case 956: // MMCR1
1831     case 957: // PMC3
1832     case 958: // PMC4
1833     case 959: // SDA
1834 gbeauche 1.26 r->pc() += 4;
1835 cebix 1.1 goto rti;
1836     }
1837     break;
1838     }
1839    
1840     case 29: case 107: case 152: case 153: // POWER instructions
1841     case 184: case 216: case 217: case 248:
1842     case 264: case 277: case 331: case 360:
1843     case 363: case 488: case 531: case 537:
1844     case 541: case 664: case 665: case 696:
1845     case 728: case 729: case 760: case 920:
1846     case 921: case 952:
1847     goto power_inst;
1848     }
1849     }
1850    
1851     // In GUI mode, show error alert
1852     if (!PrefsFindBool("nogui")) {
1853 gbeauche 1.26 sprintf(str, GetString(STR_UNKNOWN_SEGV_ERR), r->pc(), r->gpr(24), r->gpr(1), opcode);
1854 cebix 1.1 ErrorAlert(str);
1855     QuitEmulator();
1856     return;
1857     }
1858     }
1859    
1860     // For all other errors, jump into debugger (sort of...)
1861 gbeauche 1.23 crash_reason = "SIGILL";
1862 cebix 1.1 if (!ready_for_signals) {
1863 gbeauche 1.23 printf("%s\n");
1864 gbeauche 1.26 printf(" sigcontext %p, machine_regs %p\n", scp, r);
1865 cebix 1.1 printf(
1866     " pc %08lx lr %08lx ctr %08lx msr %08lx\n"
1867     " xer %08lx cr %08lx \n"
1868     " r0 %08lx r1 %08lx r2 %08lx r3 %08lx\n"
1869     " r4 %08lx r5 %08lx r6 %08lx r7 %08lx\n"
1870     " r8 %08lx r9 %08lx r10 %08lx r11 %08lx\n"
1871     " r12 %08lx r13 %08lx r14 %08lx r15 %08lx\n"
1872     " r16 %08lx r17 %08lx r18 %08lx r19 %08lx\n"
1873     " r20 %08lx r21 %08lx r22 %08lx r23 %08lx\n"
1874     " r24 %08lx r25 %08lx r26 %08lx r27 %08lx\n"
1875     " r28 %08lx r29 %08lx r30 %08lx r31 %08lx\n",
1876 gbeauche 1.23 crash_reason,
1877 gbeauche 1.26 r->pc(), r->lr(), r->ctr(), r->msr(),
1878     r->xer(), r->cr(),
1879     r->gpr(0), r->gpr(1), r->gpr(2), r->gpr(3),
1880     r->gpr(4), r->gpr(5), r->gpr(6), r->gpr(7),
1881     r->gpr(8), r->gpr(9), r->gpr(10), r->gpr(11),
1882     r->gpr(12), r->gpr(13), r->gpr(14), r->gpr(15),
1883     r->gpr(16), r->gpr(17), r->gpr(18), r->gpr(19),
1884     r->gpr(20), r->gpr(21), r->gpr(22), r->gpr(23),
1885     r->gpr(24), r->gpr(25), r->gpr(26), r->gpr(27),
1886     r->gpr(28), r->gpr(29), r->gpr(30), r->gpr(31));
1887 cebix 1.1 exit(1);
1888     QuitEmulator();
1889     return;
1890     } else {
1891     // We crashed. Save registers, tell tick thread and loop forever
1892 gbeauche 1.26 build_sigregs(&sigsegv_regs, r);
1893 cebix 1.1 emul_thread_fatal = true;
1894     for (;;) ;
1895     }
1896     rti:;
1897     }
1898     #endif
1899 gbeauche 1.15
1900    
1901     /*
1902     * Helpers to share 32-bit addressable data with MacOS
1903     */
1904    
1905     bool SheepMem::Init(void)
1906     {
1907 gbeauche 1.20 const int page_size = getpagesize();
1908    
1909     // Allocate SheepShaver globals
1910 gbeauche 1.15 if (vm_acquire_fixed((char *)base, size) < 0)
1911     return false;
1912 gbeauche 1.18
1913 gbeauche 1.20 // Allocate page with all bits set to 0
1914 gbeauche 1.18 zero_page = base + size;
1915     if (vm_acquire_fixed((char *)zero_page, page_size) < 0)
1916     return false;
1917 gbeauche 1.19 memset((char *)zero_page, 0, page_size);
1918 gbeauche 1.18 if (vm_protect((char *)zero_page, page_size, VM_PAGE_READ) < 0)
1919     return false;
1920    
1921 gbeauche 1.20 #if EMULATED_PPC
1922     // Allocate alternate stack for PowerPC interrupt routine
1923     sig_stack = zero_page + page_size;
1924     if (vm_acquire_fixed((char *)sig_stack, SIG_STACK_SIZE) < 0)
1925     return false;
1926     #endif
1927    
1928 gbeauche 1.15 top = base + size;
1929     return true;
1930     }
1931    
1932     void SheepMem::Exit(void)
1933     {
1934 gbeauche 1.18 if (top) {
1935 gbeauche 1.20 const int page_size = getpagesize();
1936    
1937     // Delete SheepShaver globals
1938     vm_release((void *)base, size);
1939    
1940     // Delete zero page
1941     vm_release((void *)zero_page, page_size);
1942    
1943     #if EMULATED_PPC
1944     // Delete alternate stack for PowerPC interrupt routine
1945     vm_release((void *)sig_stack, SIG_STACK_SIZE);
1946     #endif
1947 gbeauche 1.18 }
1948 gbeauche 1.15 }
1949 cebix 1.1
1950    
1951     /*
1952     * Display alert
1953     */
1954    
1955     #ifdef ENABLE_GTK
1956     static void dl_destroyed(void)
1957     {
1958     gtk_main_quit();
1959     }
1960    
1961     static void dl_quit(GtkWidget *dialog)
1962     {
1963     gtk_widget_destroy(dialog);
1964     }
1965    
1966     void display_alert(int title_id, int prefix_id, int button_id, const char *text)
1967     {
1968     char str[256];
1969     sprintf(str, GetString(prefix_id), text);
1970    
1971     GtkWidget *dialog = gtk_dialog_new();
1972     gtk_window_set_title(GTK_WINDOW(dialog), GetString(title_id));
1973     gtk_container_border_width(GTK_CONTAINER(dialog), 5);
1974     gtk_widget_set_uposition(GTK_WIDGET(dialog), 100, 150);
1975     gtk_signal_connect(GTK_OBJECT(dialog), "destroy", GTK_SIGNAL_FUNC(dl_destroyed), NULL);
1976    
1977     GtkWidget *label = gtk_label_new(str);
1978     gtk_widget_show(label);
1979     gtk_box_pack_start(GTK_BOX(GTK_DIALOG(dialog)->vbox), label, TRUE, TRUE, 0);
1980    
1981     GtkWidget *button = gtk_button_new_with_label(GetString(button_id));
1982     gtk_widget_show(button);
1983     gtk_signal_connect_object(GTK_OBJECT(button), "clicked", GTK_SIGNAL_FUNC(dl_quit), GTK_OBJECT(dialog));
1984     gtk_box_pack_start(GTK_BOX(GTK_DIALOG(dialog)->action_area), button, FALSE, FALSE, 0);
1985     GTK_WIDGET_SET_FLAGS(button, GTK_CAN_DEFAULT);
1986     gtk_widget_grab_default(button);
1987     gtk_widget_show(dialog);
1988    
1989     gtk_main();
1990     }
1991     #endif
1992    
1993    
1994     /*
1995     * Display error alert
1996     */
1997    
1998     void ErrorAlert(const char *text)
1999     {
2000     #ifdef ENABLE_GTK
2001     if (PrefsFindBool("nogui") || x_display == NULL) {
2002     printf(GetString(STR_SHELL_ERROR_PREFIX), text);
2003     return;
2004     }
2005     VideoQuitFullScreen();
2006     display_alert(STR_ERROR_ALERT_TITLE, STR_GUI_ERROR_PREFIX, STR_QUIT_BUTTON, text);
2007     #else
2008     printf(GetString(STR_SHELL_ERROR_PREFIX), text);
2009     #endif
2010     }
2011    
2012    
2013     /*
2014     * Display warning alert
2015     */
2016    
2017     void WarningAlert(const char *text)
2018     {
2019     #ifdef ENABLE_GTK
2020     if (PrefsFindBool("nogui") || x_display == NULL) {
2021     printf(GetString(STR_SHELL_WARNING_PREFIX), text);
2022     return;
2023     }
2024     display_alert(STR_WARNING_ALERT_TITLE, STR_GUI_WARNING_PREFIX, STR_OK_BUTTON, text);
2025     #else
2026     printf(GetString(STR_SHELL_WARNING_PREFIX), text);
2027     #endif
2028     }
2029    
2030    
2031     /*
2032     * Display choice alert
2033     */
2034    
2035     bool ChoiceAlert(const char *text, const char *pos, const char *neg)
2036     {
2037     printf(GetString(STR_SHELL_WARNING_PREFIX), text);
2038     return false; //!!
2039     }