ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.35
Committed: 2004-04-22T22:54:47Z (20 years, 1 month ago) by gbeauche
Branch: MAIN
Changes since 1.34: +21 -6 lines
Log Message:
Extend NativeOp count to 64 (6-bit value), aka fix NATIVE_FILLRECT opcpdes.
Translate NQD_{bitblt,fillrect,invrect} to direct native calls.
Use Mac2HostAddr() for converting Mac base address to native.

File Contents

# User Rev Content
1 gbeauche 1.1 /*
2     * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3     *
4 cebix 1.25 * SheepShaver (C) 1997-2004 Christian Bauer and Marc Hellwig
5 gbeauche 1.1 *
6     * This program is free software; you can redistribute it and/or modify
7     * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation; either version 2 of the License, or
9     * (at your option) any later version.
10     *
11     * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15     *
16     * You should have received a copy of the GNU General Public License
17     * along with this program; if not, write to the Free Software
18     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19     */
20    
21     #include "sysdeps.h"
22     #include "cpu_emulation.h"
23     #include "main.h"
24 gbeauche 1.3 #include "prefs.h"
25 gbeauche 1.1 #include "xlowmem.h"
26     #include "emul_op.h"
27     #include "rom_patches.h"
28     #include "macos_util.h"
29     #include "block-alloc.hpp"
30     #include "sigsegv.h"
31     #include "cpu/ppc/ppc-cpu.hpp"
32     #include "cpu/ppc/ppc-operations.hpp"
33 gbeauche 1.18 #include "cpu/ppc/ppc-instructions.hpp"
34 gbeauche 1.21 #include "thunks.h"
35 gbeauche 1.1
36     // Used for NativeOp trampolines
37     #include "video.h"
38     #include "name_registry.h"
39     #include "serial.h"
40 gbeauche 1.16 #include "ether.h"
41 gbeauche 1.1
42     #include <stdio.h>
43 gbeauche 1.31 #include <stdlib.h>
44 gbeauche 1.1
45     #if ENABLE_MON
46     #include "mon.h"
47     #include "mon_disass.h"
48     #endif
49    
50 gbeauche 1.10 #define DEBUG 0
51 gbeauche 1.1 #include "debug.h"
52    
53 gbeauche 1.15 // Emulation time statistics
54     #define EMUL_TIME_STATS 1
55    
56     #if EMUL_TIME_STATS
57     static clock_t emul_start_time;
58     static uint32 interrupt_count = 0;
59     static clock_t interrupt_time = 0;
60     static uint32 exec68k_count = 0;
61     static clock_t exec68k_time = 0;
62     static uint32 native_exec_count = 0;
63     static clock_t native_exec_time = 0;
64     static uint32 macos_exec_count = 0;
65     static clock_t macos_exec_time = 0;
66     #endif
67    
68 gbeauche 1.1 static void enter_mon(void)
69     {
70     // Start up mon in real-mode
71     #if ENABLE_MON
72     char *arg[4] = {"mon", "-m", "-r", NULL};
73     mon(3, arg);
74     #endif
75     }
76    
77 gbeauche 1.23 // From main_*.cpp
78     extern uintptr SignalStackBase();
79    
80 gbeauche 1.26 // From rsrc_patches.cpp
81     extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
82    
83 gbeauche 1.21 // PowerPC EmulOp to exit from emulation looop
84     const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
85    
86 gbeauche 1.2 // Enable multicore (main/interrupts) cpu emulation?
87 gbeauche 1.9 #define MULTICORE_CPU (ASYNC_IRQ ? 1 : 0)
88 gbeauche 1.2
89 gbeauche 1.1 // Enable Execute68k() safety checks?
90     #define SAFE_EXEC_68K 1
91    
92     // Save FP state in Execute68k()?
93     #define SAVE_FP_EXEC_68K 1
94    
95     // Interrupts in EMUL_OP mode?
96     #define INTERRUPTS_IN_EMUL_OP_MODE 1
97    
98     // Interrupts in native mode?
99     #define INTERRUPTS_IN_NATIVE_MODE 1
100    
101     // Pointer to Kernel Data
102 gbeauche 1.4 static KernelData * const kernel_data = (KernelData *)KERNEL_DATA_BASE;
103 gbeauche 1.1
104 gbeauche 1.17 // SIGSEGV handler
105     static sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
106    
107 gbeauche 1.20 // JIT Compiler enabled?
108     static inline bool enable_jit_p()
109     {
110     return PrefsFindBool("jit");
111     }
112    
113 gbeauche 1.1
114     /**
115     * PowerPC emulator glue with special 'sheep' opcodes
116     **/
117    
118 gbeauche 1.18 enum {
119     PPC_I(SHEEP) = PPC_I(MAX),
120     PPC_I(SHEEP_MAX)
121     };
122    
123 gbeauche 1.1 class sheepshaver_cpu
124     : public powerpc_cpu
125     {
126     void init_decoder();
127     void execute_sheep(uint32 opcode);
128    
129     public:
130    
131 gbeauche 1.10 // Constructor
132     sheepshaver_cpu();
133 gbeauche 1.1
134 gbeauche 1.24 // CR & XER accessors
135 gbeauche 1.1 uint32 get_cr() const { return cr().get(); }
136     void set_cr(uint32 v) { cr().set(v); }
137 gbeauche 1.24 uint32 get_xer() const { return xer().get(); }
138     void set_xer(uint32 v) { xer().set(v); }
139 gbeauche 1.1
140 gbeauche 1.26 // Execute EMUL_OP routine
141     void execute_emul_op(uint32 emul_op);
142    
143 gbeauche 1.1 // Execute 68k routine
144     void execute_68k(uint32 entry, M68kRegisters *r);
145    
146 gbeauche 1.2 // Execute ppc routine
147     void execute_ppc(uint32 entry);
148    
149 gbeauche 1.1 // Execute MacOS/PPC code
150     uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
151    
152 gbeauche 1.26 // Compile one instruction
153     virtual bool compile1(codegen_context_t & cg_context);
154    
155 gbeauche 1.1 // Resource manager thunk
156     void get_resource(uint32 old_get_resource);
157    
158     // Handle MacOS interrupt
159 gbeauche 1.4 void interrupt(uint32 entry);
160 gbeauche 1.10 void handle_interrupt();
161 gbeauche 1.2
162 gbeauche 1.17 // Make sure the SIGSEGV handler can access CPU registers
163     friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
164 gbeauche 1.1 };
165    
166 gbeauche 1.29 // Memory allocator returning areas aligned on 16-byte boundaries
167     void *operator new(size_t size)
168     {
169     void *p;
170    
171 gbeauche 1.31 #if defined(HAVE_POSIX_MEMALIGN)
172 gbeauche 1.29 if (posix_memalign(&p, 16, size) != 0)
173     throw std::bad_alloc();
174 gbeauche 1.31 #elif defined(HAVE_MEMALIGN)
175     p = memalign(16, size);
176     #elif defined(HAVE_VALLOC)
177     p = valloc(size); // page-aligned!
178     #else
179     /* XXX: handle padding ourselves */
180     p = malloc(size);
181     #endif
182 gbeauche 1.29
183     return p;
184     }
185    
186     void operator delete(void *p)
187     {
188 gbeauche 1.31 #if defined(HAVE_MEMALIGN) || defined(HAVE_VALLOC)
189     #if defined(__GLIBC__)
190     // this is known to work only with GNU libc
191     free(p);
192     #endif
193     #else
194 gbeauche 1.29 free(p);
195 gbeauche 1.31 #endif
196 gbeauche 1.29 }
197 gbeauche 1.1
198 gbeauche 1.10 sheepshaver_cpu::sheepshaver_cpu()
199 gbeauche 1.20 : powerpc_cpu(enable_jit_p())
200 gbeauche 1.10 {
201     init_decoder();
202     }
203    
204 gbeauche 1.1 void sheepshaver_cpu::init_decoder()
205     {
206     static const instr_info_t sheep_ii_table[] = {
207     { "sheep",
208 gbeauche 1.13 (execute_pmf)&sheepshaver_cpu::execute_sheep,
209 gbeauche 1.1 NULL,
210 gbeauche 1.18 PPC_I(SHEEP),
211 gbeauche 1.7 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
212 gbeauche 1.1 }
213     };
214    
215     const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
216     D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
217    
218     for (int i = 0; i < ii_count; i++) {
219     const instr_info_t * ii = &sheep_ii_table[i];
220     init_decoder_entry(ii);
221     }
222     }
223    
224     // Forward declaration for native opcode handler
225     static void NativeOp(int selector);
226    
227 gbeauche 1.2 /* NativeOp instruction format:
228 gbeauche 1.35 +------------+-------------------------+--+-----------+------------+
229     | 6 | |FN| OP | 2 |
230     +------------+-------------------------+--+-----------+------------+
231     0 5 |6 18 19 20 25 26 31
232 gbeauche 1.2 */
233    
234 gbeauche 1.35 typedef bit_field< 19, 19 > FN_field;
235     typedef bit_field< 20, 25 > NATIVE_OP_field;
236 gbeauche 1.2 typedef bit_field< 26, 31 > EMUL_OP_field;
237    
238 gbeauche 1.26 // Execute EMUL_OP routine
239     void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
240     {
241     M68kRegisters r68;
242     WriteMacInt32(XLM_68K_R25, gpr(25));
243     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
244     for (int i = 0; i < 8; i++)
245     r68.d[i] = gpr(8 + i);
246     for (int i = 0; i < 7; i++)
247     r68.a[i] = gpr(16 + i);
248     r68.a[7] = gpr(1);
249     uint32 saved_cr = get_cr() & CR_field<2>::mask();
250     uint32 saved_xer = get_xer();
251     EmulOp(&r68, gpr(24), emul_op);
252     set_cr(saved_cr);
253     set_xer(saved_xer);
254     for (int i = 0; i < 8; i++)
255     gpr(8 + i) = r68.d[i];
256     for (int i = 0; i < 7; i++)
257     gpr(16 + i) = r68.a[i];
258     gpr(1) = r68.a[7];
259     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
260     }
261    
262 gbeauche 1.1 // Execute SheepShaver instruction
263     void sheepshaver_cpu::execute_sheep(uint32 opcode)
264     {
265     // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
266     assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
267    
268     switch (opcode & 0x3f) {
269     case 0: // EMUL_RETURN
270     QuitEmulator();
271     break;
272 gbeauche 1.8
273 gbeauche 1.1 case 1: // EXEC_RETURN
274 gbeauche 1.12 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
275 gbeauche 1.1 break;
276    
277     case 2: // EXEC_NATIVE
278 gbeauche 1.2 NativeOp(NATIVE_OP_field::extract(opcode));
279     if (FN_field::test(opcode))
280     pc() = lr();
281     else
282     pc() += 4;
283 gbeauche 1.1 break;
284    
285 gbeauche 1.26 default: // EMUL_OP
286     execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
287     pc() += 4;
288     break;
289     }
290     }
291    
292     // Compile one instruction
293     bool sheepshaver_cpu::compile1(codegen_context_t & cg_context)
294     {
295     #if PPC_ENABLE_JIT
296     const instr_info_t *ii = cg_context.instr_info;
297     if (ii->mnemo != PPC_I(SHEEP))
298     return false;
299    
300     bool compiled = false;
301     powerpc_dyngen & dg = cg_context.codegen;
302     uint32 opcode = cg_context.opcode;
303    
304     switch (opcode & 0x3f) {
305     case 0: // EMUL_RETURN
306     dg.gen_invoke(QuitEmulator);
307     compiled = true;
308     break;
309    
310     case 1: // EXEC_RETURN
311     dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
312     compiled = true;
313     break;
314    
315     case 2: { // EXEC_NATIVE
316     uint32 selector = NATIVE_OP_field::extract(opcode);
317     switch (selector) {
318     case NATIVE_PATCH_NAME_REGISTRY:
319     dg.gen_invoke(DoPatchNameRegistry);
320     compiled = true;
321     break;
322     case NATIVE_VIDEO_INSTALL_ACCEL:
323     dg.gen_invoke(VideoInstallAccel);
324     compiled = true;
325     break;
326     case NATIVE_VIDEO_VBL:
327     dg.gen_invoke(VideoVBL);
328     compiled = true;
329     break;
330     case NATIVE_GET_RESOURCE:
331     case NATIVE_GET_1_RESOURCE:
332     case NATIVE_GET_IND_RESOURCE:
333     case NATIVE_GET_1_IND_RESOURCE:
334     case NATIVE_R_GET_RESOURCE: {
335     static const uint32 get_resource_ptr[] = {
336     XLM_GET_RESOURCE,
337     XLM_GET_1_RESOURCE,
338     XLM_GET_IND_RESOURCE,
339     XLM_GET_1_IND_RESOURCE,
340     XLM_R_GET_RESOURCE
341     };
342     uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
343     typedef void (*func_t)(dyngen_cpu_base, uint32);
344     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
345     dg.gen_invoke_CPU_im(func, old_get_resource);
346     compiled = true;
347     break;
348     }
349     case NATIVE_DISABLE_INTERRUPT:
350     dg.gen_invoke(DisableInterrupt);
351     compiled = true;
352     break;
353     case NATIVE_ENABLE_INTERRUPT:
354     dg.gen_invoke(EnableInterrupt);
355     compiled = true;
356     break;
357     case NATIVE_CHECK_LOAD_INVOC:
358     dg.gen_load_T0_GPR(3);
359     dg.gen_load_T1_GPR(4);
360     dg.gen_se_16_32_T1();
361     dg.gen_load_T2_GPR(5);
362     dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
363 gbeauche 1.35 compiled = true;
364     break;
365     case NATIVE_BITBLT:
366     dg.gen_load_T0_GPR(3);
367     dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt);
368     compiled = true;
369     break;
370     case NATIVE_INVRECT:
371     dg.gen_load_T0_GPR(3);
372     dg.gen_invoke_T0((void (*)(uint32))NQD_invrect);
373     compiled = true;
374     break;
375     case NATIVE_FILLRECT:
376     dg.gen_load_T0_GPR(3);
377     dg.gen_invoke_T0((void (*)(uint32))NQD_fillrect);
378 gbeauche 1.26 compiled = true;
379     break;
380     }
381     if (FN_field::test(opcode)) {
382     if (compiled) {
383     dg.gen_load_A0_LR();
384     dg.gen_set_PC_A0();
385     }
386     cg_context.done_compile = true;
387     }
388     else
389     cg_context.done_compile = false;
390     break;
391     }
392    
393 gbeauche 1.1 default: { // EMUL_OP
394 gbeauche 1.26 typedef void (*func_t)(dyngen_cpu_base, uint32);
395     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
396     dg.gen_invoke_CPU_im(func, EMUL_OP_field::extract(opcode) - 3);
397     cg_context.done_compile = false;
398     compiled = true;
399 gbeauche 1.1 break;
400     }
401     }
402 gbeauche 1.26 return compiled;
403     #endif
404     return false;
405 gbeauche 1.1 }
406    
407     // Handle MacOS interrupt
408 gbeauche 1.4 void sheepshaver_cpu::interrupt(uint32 entry)
409 gbeauche 1.1 {
410 gbeauche 1.15 #if EMUL_TIME_STATS
411     interrupt_count++;
412     const clock_t interrupt_start = clock();
413     #endif
414    
415 gbeauche 1.4 #if !MULTICORE_CPU
416 gbeauche 1.2 // Save program counters and branch registers
417     uint32 saved_pc = pc();
418     uint32 saved_lr = lr();
419     uint32 saved_ctr= ctr();
420 gbeauche 1.4 uint32 saved_sp = gpr(1);
421 gbeauche 1.2 #endif
422    
423 gbeauche 1.4 // Initialize stack pointer to SheepShaver alternate stack base
424 gbeauche 1.23 gpr(1) = SignalStackBase() - 64;
425 gbeauche 1.1
426     // Build trampoline to return from interrupt
427 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
428 gbeauche 1.1
429     // Prepare registers for nanokernel interrupt routine
430 gbeauche 1.5 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
431     kernel_data->v[0x018 >> 2] = htonl(gpr(6));
432 gbeauche 1.1
433 gbeauche 1.5 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
434 gbeauche 1.2 assert(gpr(6) != 0);
435 gbeauche 1.1 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
436     WriteMacInt32(gpr(6) + 0x144, gpr(8));
437     WriteMacInt32(gpr(6) + 0x14c, gpr(9));
438     WriteMacInt32(gpr(6) + 0x154, gpr(10));
439     WriteMacInt32(gpr(6) + 0x15c, gpr(11));
440     WriteMacInt32(gpr(6) + 0x164, gpr(12));
441     WriteMacInt32(gpr(6) + 0x16c, gpr(13));
442    
443     gpr(1) = KernelDataAddr;
444 gbeauche 1.5 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
445 gbeauche 1.1 gpr(8) = 0;
446 gbeauche 1.21 gpr(10) = trampoline.addr();
447     gpr(12) = trampoline.addr();
448 gbeauche 1.8 gpr(13) = get_cr();
449 gbeauche 1.1
450     // rlwimi. r7,r7,8,0,0
451     uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
452     record_cr0(result);
453     gpr(7) = result;
454    
455     gpr(11) = 0xf072; // MSR (SRR1)
456 gbeauche 1.8 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
457 gbeauche 1.1
458     // Enter nanokernel
459     execute(entry);
460    
461 gbeauche 1.2 #if !MULTICORE_CPU
462     // Restore program counters and branch registers
463     pc() = saved_pc;
464     lr() = saved_lr;
465     ctr()= saved_ctr;
466 gbeauche 1.4 gpr(1) = saved_sp;
467 gbeauche 1.2 #endif
468 gbeauche 1.15
469     #if EMUL_TIME_STATS
470     interrupt_time += (clock() - interrupt_start);
471     #endif
472 gbeauche 1.1 }
473    
474     // Execute 68k routine
475     void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
476     {
477 gbeauche 1.15 #if EMUL_TIME_STATS
478     exec68k_count++;
479     const clock_t exec68k_start = clock();
480     #endif
481    
482 gbeauche 1.1 #if SAFE_EXEC_68K
483     if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
484     printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
485     #endif
486    
487     // Save program counters and branch registers
488     uint32 saved_pc = pc();
489     uint32 saved_lr = lr();
490     uint32 saved_ctr= ctr();
491 gbeauche 1.8 uint32 saved_cr = get_cr();
492 gbeauche 1.1
493     // Create MacOS stack frame
494 gbeauche 1.6 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
495 gbeauche 1.1 uint32 sp = gpr(1);
496 gbeauche 1.6 gpr(1) -= 56;
497 gbeauche 1.1 WriteMacInt32(gpr(1), sp);
498    
499     // Save PowerPC registers
500 gbeauche 1.6 uint32 saved_GPRs[19];
501     memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
502 gbeauche 1.1 #if SAVE_FP_EXEC_68K
503 gbeauche 1.6 double saved_FPRs[18];
504     memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
505 gbeauche 1.1 #endif
506    
507     // Setup registers for 68k emulator
508 gbeauche 1.2 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
509 gbeauche 1.1 for (int i = 0; i < 8; i++) // d[0]..d[7]
510     gpr(8 + i) = r->d[i];
511     for (int i = 0; i < 7; i++) // a[0]..a[6]
512     gpr(16 + i) = r->a[i];
513     gpr(23) = 0;
514     gpr(24) = entry;
515     gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
516     gpr(26) = 0;
517     gpr(28) = 0; // VBR
518 gbeauche 1.5 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
519     gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
520 gbeauche 1.1 gpr(31) = KernelDataAddr + 0x1000;
521    
522     // Push return address (points to EXEC_RETURN opcode) on stack
523     gpr(1) -= 4;
524     WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
525    
526     // Rentering 68k emulator
527     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
528    
529     // Set r0 to 0 for 68k emulator
530     gpr(0) = 0;
531    
532     // Execute 68k opcode
533     uint32 opcode = ReadMacInt16(gpr(24));
534     gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
535     gpr(29) += opcode * 8;
536     execute(gpr(29));
537    
538     // Save r25 (contains current 68k interrupt level)
539     WriteMacInt32(XLM_68K_R25, gpr(25));
540    
541     // Reentering EMUL_OP mode
542     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
543    
544     // Save 68k registers
545     for (int i = 0; i < 8; i++) // d[0]..d[7]
546     r->d[i] = gpr(8 + i);
547     for (int i = 0; i < 7; i++) // a[0]..a[6]
548     r->a[i] = gpr(16 + i);
549    
550     // Restore PowerPC registers
551 gbeauche 1.6 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
552 gbeauche 1.1 #if SAVE_FP_EXEC_68K
553 gbeauche 1.6 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
554 gbeauche 1.1 #endif
555    
556     // Cleanup stack
557 gbeauche 1.6 gpr(1) += 56;
558 gbeauche 1.1
559     // Restore program counters and branch registers
560     pc() = saved_pc;
561     lr() = saved_lr;
562     ctr()= saved_ctr;
563 gbeauche 1.8 set_cr(saved_cr);
564 gbeauche 1.15
565     #if EMUL_TIME_STATS
566     exec68k_time += (clock() - exec68k_start);
567     #endif
568 gbeauche 1.1 }
569    
570     // Call MacOS PPC code
571     uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
572     {
573 gbeauche 1.15 #if EMUL_TIME_STATS
574     macos_exec_count++;
575     const clock_t macos_exec_start = clock();
576     #endif
577    
578 gbeauche 1.1 // Save program counters and branch registers
579     uint32 saved_pc = pc();
580     uint32 saved_lr = lr();
581     uint32 saved_ctr= ctr();
582    
583     // Build trampoline with EXEC_RETURN
584 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
585     lr() = trampoline.addr();
586 gbeauche 1.1
587     gpr(1) -= 64; // Create stack frame
588     uint32 proc = ReadMacInt32(tvect); // Get routine address
589     uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
590    
591     // Save PowerPC registers
592     uint32 regs[8];
593     regs[0] = gpr(2);
594     for (int i = 0; i < nargs; i++)
595     regs[i + 1] = gpr(i + 3);
596    
597     // Prepare and call MacOS routine
598     gpr(2) = toc;
599     for (int i = 0; i < nargs; i++)
600     gpr(i + 3) = args[i];
601     execute(proc);
602     uint32 retval = gpr(3);
603    
604     // Restore PowerPC registers
605     for (int i = 0; i <= nargs; i++)
606     gpr(i + 2) = regs[i];
607    
608     // Cleanup stack
609     gpr(1) += 64;
610    
611     // Restore program counters and branch registers
612     pc() = saved_pc;
613     lr() = saved_lr;
614     ctr()= saved_ctr;
615    
616 gbeauche 1.15 #if EMUL_TIME_STATS
617     macos_exec_time += (clock() - macos_exec_start);
618     #endif
619    
620 gbeauche 1.1 return retval;
621     }
622    
623 gbeauche 1.2 // Execute ppc routine
624     inline void sheepshaver_cpu::execute_ppc(uint32 entry)
625     {
626     // Save branch registers
627     uint32 saved_lr = lr();
628    
629 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
630     WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
631     lr() = trampoline.addr();
632 gbeauche 1.2
633     execute(entry);
634    
635     // Restore branch registers
636     lr() = saved_lr;
637     }
638    
639 gbeauche 1.1 // Resource Manager thunk
640     inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
641     {
642 gbeauche 1.2 uint32 type = gpr(3);
643     int16 id = gpr(4);
644    
645     // Create stack frame
646     gpr(1) -= 56;
647    
648     // Call old routine
649     execute_ppc(old_get_resource);
650    
651     // Call CheckLoad()
652 gbeauche 1.5 uint32 handle = gpr(3);
653 gbeauche 1.2 check_load_invoc(type, id, handle);
654 gbeauche 1.5 gpr(3) = handle;
655 gbeauche 1.2
656     // Cleanup stack
657     gpr(1) += 56;
658 gbeauche 1.1 }
659    
660    
661     /**
662     * SheepShaver CPU engine interface
663     **/
664    
665     static sheepshaver_cpu *main_cpu = NULL; // CPU emulator to handle usual control flow
666     static sheepshaver_cpu *interrupt_cpu = NULL; // CPU emulator to handle interrupts
667     static sheepshaver_cpu *current_cpu = NULL; // Current CPU emulator context
668    
669 gbeauche 1.7 void FlushCodeCache(uintptr start, uintptr end)
670     {
671     D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
672     main_cpu->invalidate_cache_range(start, end);
673     #if MULTICORE_CPU
674     interrupt_cpu->invalidate_cache_range(start, end);
675     #endif
676     }
677    
678 gbeauche 1.2 static inline void cpu_push(sheepshaver_cpu *new_cpu)
679     {
680     #if MULTICORE_CPU
681     current_cpu = new_cpu;
682     #endif
683     }
684    
685     static inline void cpu_pop()
686     {
687     #if MULTICORE_CPU
688     current_cpu = main_cpu;
689     #endif
690     }
691    
692 gbeauche 1.1 // Dump PPC registers
693     static void dump_registers(void)
694     {
695     current_cpu->dump_registers();
696     }
697    
698     // Dump log
699     static void dump_log(void)
700     {
701     current_cpu->dump_log();
702     }
703    
704     /*
705     * Initialize CPU emulation
706     */
707    
708 gbeauche 1.3 static sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
709 gbeauche 1.1 {
710     #if ENABLE_VOSF
711 gbeauche 1.3 // Handle screen fault
712     extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
713     if (Screen_fault_handler(fault_address, fault_instruction))
714     return SIGSEGV_RETURN_SUCCESS;
715 gbeauche 1.1 #endif
716 gbeauche 1.3
717     const uintptr addr = (uintptr)fault_address;
718     #if HAVE_SIGSEGV_SKIP_INSTRUCTION
719     // Ignore writes to ROM
720     if ((addr - ROM_BASE) < ROM_SIZE)
721     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
722    
723 gbeauche 1.17 // Get program counter of target CPU
724     sheepshaver_cpu * const cpu = current_cpu;
725     const uint32 pc = cpu->pc();
726    
727     // Fault in Mac ROM or RAM?
728     bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize));
729     if (mac_fault) {
730    
731     // "VM settings" during MacOS 8 installation
732     if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
733     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
734    
735     // MacOS 8.5 installation
736     else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
737     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
738    
739     // MacOS 8 serial drivers on startup
740     else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
741     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
742    
743     // MacOS 8.1 serial drivers on startup
744     else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
745     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
746     else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
747     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
748    
749 gbeauche 1.30 // Ignore writes to the zero page
750     else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
751     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
752    
753 gbeauche 1.17 // Ignore all other faults, if requested
754     if (PrefsFindBool("ignoresegv"))
755     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
756     }
757 gbeauche 1.3 #else
758     #error "FIXME: You don't have the capability to skip instruction within signal handlers"
759 gbeauche 1.1 #endif
760 gbeauche 1.3
761     printf("SIGSEGV\n");
762     printf(" pc %p\n", fault_instruction);
763     printf(" ea %p\n", fault_address);
764     printf(" cpu %s\n", current_cpu == main_cpu ? "main" : "interrupts");
765 gbeauche 1.1 dump_registers();
766     current_cpu->dump_log();
767     enter_mon();
768     QuitEmulator();
769 gbeauche 1.3
770     return SIGSEGV_RETURN_FAILURE;
771 gbeauche 1.1 }
772    
773     void init_emul_ppc(void)
774     {
775     // Initialize main CPU emulator
776     main_cpu = new sheepshaver_cpu();
777     main_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
778 gbeauche 1.24 main_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
779 gbeauche 1.1 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
780    
781 gbeauche 1.2 #if MULTICORE_CPU
782 gbeauche 1.1 // Initialize alternate CPU emulator to handle interrupts
783     interrupt_cpu = new sheepshaver_cpu();
784 gbeauche 1.2 #endif
785 gbeauche 1.1
786 gbeauche 1.3 // Install the handler for SIGSEGV
787     sigsegv_install_handler(sigsegv_handler);
788 gbeauche 1.4
789 gbeauche 1.1 #if ENABLE_MON
790     // Install "regs" command in cxmon
791     mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
792     mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
793     #endif
794 gbeauche 1.15
795     #if EMUL_TIME_STATS
796     emul_start_time = clock();
797     #endif
798 gbeauche 1.1 }
799    
800     /*
801 gbeauche 1.14 * Deinitialize emulation
802     */
803    
804     void exit_emul_ppc(void)
805     {
806 gbeauche 1.15 #if EMUL_TIME_STATS
807     clock_t emul_end_time = clock();
808    
809     printf("### Statistics for SheepShaver emulation parts\n");
810     const clock_t emul_time = emul_end_time - emul_start_time;
811     printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
812     printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
813     (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
814    
815     #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
816     printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
817     printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
818     double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
819     100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
820     } while (0)
821    
822     PRINT_STATS("Execute68k[Trap] execution", exec68k);
823     PRINT_STATS("NativeOp execution", native_exec);
824     PRINT_STATS("MacOS routine execution", macos_exec);
825    
826     #undef PRINT_STATS
827     printf("\n");
828     #endif
829    
830 gbeauche 1.14 delete main_cpu;
831     #if MULTICORE_CPU
832     delete interrupt_cpu;
833     #endif
834     }
835    
836     /*
837 gbeauche 1.1 * Emulation loop
838     */
839    
840     void emul_ppc(uint32 entry)
841     {
842     current_cpu = main_cpu;
843 gbeauche 1.24 #if 0
844 gbeauche 1.1 current_cpu->start_log();
845 gbeauche 1.10 #endif
846     // start emulation loop and enable code translation or caching
847 gbeauche 1.19 current_cpu->execute(entry);
848 gbeauche 1.1 }
849    
850     /*
851     * Handle PowerPC interrupt
852     */
853    
854 gbeauche 1.11 #if ASYNC_IRQ
855     void HandleInterrupt(void)
856     {
857     main_cpu->handle_interrupt();
858     }
859     #else
860 gbeauche 1.2 void TriggerInterrupt(void)
861     {
862     #if 0
863     WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
864     #else
865 gbeauche 1.10 // Trigger interrupt to main cpu only
866     if (main_cpu)
867     main_cpu->trigger_interrupt();
868 gbeauche 1.2 #endif
869     }
870 gbeauche 1.4 #endif
871 gbeauche 1.2
872 gbeauche 1.10 void sheepshaver_cpu::handle_interrupt(void)
873 gbeauche 1.1 {
874     // Do nothing if interrupts are disabled
875 gbeauche 1.16 if (*(int32 *)XLM_IRQ_NEST > 0)
876 gbeauche 1.1 return;
877    
878 gbeauche 1.2 // Do nothing if there is no interrupt pending
879     if (InterruptFlags == 0)
880 gbeauche 1.1 return;
881    
882     // Disable MacOS stack sniffer
883     WriteMacInt32(0x110, 0);
884    
885     // Interrupt action depends on current run mode
886     switch (ReadMacInt32(XLM_RUN_MODE)) {
887     case MODE_68K:
888     // 68k emulator active, trigger 68k interrupt level 1
889     assert(current_cpu == main_cpu);
890     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
891 gbeauche 1.10 set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
892 gbeauche 1.1 break;
893    
894     #if INTERRUPTS_IN_NATIVE_MODE
895     case MODE_NATIVE:
896     // 68k emulator inactive, in nanokernel?
897     assert(current_cpu == main_cpu);
898 gbeauche 1.10 if (gpr(1) != KernelDataAddr) {
899 gbeauche 1.1 // Prepare for 68k interrupt level 1
900     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
901     WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
902     ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
903     | tswap32(kernel_data->v[0x674 >> 2]));
904    
905     // Execute nanokernel interrupt routine (this will activate the 68k emulator)
906 gbeauche 1.2 DisableInterrupt();
907     cpu_push(interrupt_cpu);
908 gbeauche 1.1 if (ROMType == ROMTYPE_NEWWORLD)
909 gbeauche 1.4 current_cpu->interrupt(ROM_BASE + 0x312b1c);
910 gbeauche 1.1 else
911 gbeauche 1.4 current_cpu->interrupt(ROM_BASE + 0x312a3c);
912 gbeauche 1.2 cpu_pop();
913 gbeauche 1.1 }
914     break;
915     #endif
916    
917     #if INTERRUPTS_IN_EMUL_OP_MODE
918     case MODE_EMUL_OP:
919     // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
920     if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
921     #if 1
922     // Execute full 68k interrupt routine
923     M68kRegisters r;
924     uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
925     WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
926 gbeauche 1.2 static const uint8 proc[] = {
927     0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
928     0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
929     0x40, 0xe7, // move sr,-(sp) (saved SR)
930     0x20, 0x78, 0x00, 0x064, // move.l $64,a0
931     0x4e, 0xd0, // jmp (a0)
932     M68K_RTS >> 8, M68K_RTS & 0xff // @1
933 gbeauche 1.1 };
934     Execute68k((uint32)proc, &r);
935     WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
936     #else
937     // Only update cursor
938     if (HasMacStarted()) {
939     if (InterruptFlags & INTFLAG_VIA) {
940     ClearInterruptFlag(INTFLAG_VIA);
941     ADBInterrupt();
942 gbeauche 1.22 ExecuteNative(NATIVE_VIDEO_VBL);
943 gbeauche 1.1 }
944     }
945     #endif
946     }
947     break;
948     #endif
949     }
950     }
951    
952     static void get_resource(void);
953     static void get_1_resource(void);
954     static void get_ind_resource(void);
955     static void get_1_ind_resource(void);
956     static void r_get_resource(void);
957    
958     #define GPR(REG) current_cpu->gpr(REG)
959    
960     static void NativeOp(int selector)
961     {
962 gbeauche 1.15 #if EMUL_TIME_STATS
963     native_exec_count++;
964     const clock_t native_exec_start = clock();
965     #endif
966    
967 gbeauche 1.1 switch (selector) {
968     case NATIVE_PATCH_NAME_REGISTRY:
969     DoPatchNameRegistry();
970     break;
971     case NATIVE_VIDEO_INSTALL_ACCEL:
972     VideoInstallAccel();
973     break;
974     case NATIVE_VIDEO_VBL:
975     VideoVBL();
976     break;
977     case NATIVE_VIDEO_DO_DRIVER_IO:
978     GPR(3) = (int32)(int16)VideoDoDriverIO((void *)GPR(3), (void *)GPR(4),
979     (void *)GPR(5), GPR(6), GPR(7));
980     break;
981 gbeauche 1.16 #ifdef WORDS_BIGENDIAN
982     case NATIVE_ETHER_IRQ:
983     EtherIRQ();
984     break;
985     case NATIVE_ETHER_INIT:
986     GPR(3) = InitStreamModule((void *)GPR(3));
987     break;
988     case NATIVE_ETHER_TERM:
989     TerminateStreamModule();
990     break;
991     case NATIVE_ETHER_OPEN:
992     GPR(3) = ether_open((queue_t *)GPR(3), (void *)GPR(4), GPR(5), GPR(6), (void*)GPR(7));
993 gbeauche 1.1 break;
994 gbeauche 1.16 case NATIVE_ETHER_CLOSE:
995     GPR(3) = ether_close((queue_t *)GPR(3), GPR(4), (void *)GPR(5));
996 gbeauche 1.1 break;
997 gbeauche 1.16 case NATIVE_ETHER_WPUT:
998     GPR(3) = ether_wput((queue_t *)GPR(3), (mblk_t *)GPR(4));
999 gbeauche 1.1 break;
1000 gbeauche 1.16 case NATIVE_ETHER_RSRV:
1001     GPR(3) = ether_rsrv((queue_t *)GPR(3));
1002 gbeauche 1.1 break;
1003 gbeauche 1.34 #else
1004     case NATIVE_ETHER_INIT:
1005     // FIXME: needs more complicated thunks
1006     GPR(3) = false;
1007     break;
1008     #endif
1009 gbeauche 1.32 case NATIVE_SYNC_HOOK:
1010     GPR(3) = NQD_sync_hook(GPR(3));
1011     break;
1012     case NATIVE_BITBLT_HOOK:
1013     GPR(3) = NQD_bitblt_hook(GPR(3));
1014     break;
1015     case NATIVE_BITBLT:
1016     NQD_bitblt(GPR(3));
1017     break;
1018     case NATIVE_FILLRECT_HOOK:
1019     GPR(3) = NQD_fillrect_hook(GPR(3));
1020     break;
1021     case NATIVE_INVRECT:
1022     NQD_invrect(GPR(3));
1023     break;
1024 gbeauche 1.33 case NATIVE_FILLRECT:
1025     NQD_fillrect(GPR(3));
1026 gbeauche 1.32 break;
1027 gbeauche 1.1 case NATIVE_SERIAL_NOTHING:
1028     case NATIVE_SERIAL_OPEN:
1029     case NATIVE_SERIAL_PRIME_IN:
1030     case NATIVE_SERIAL_PRIME_OUT:
1031     case NATIVE_SERIAL_CONTROL:
1032     case NATIVE_SERIAL_STATUS:
1033     case NATIVE_SERIAL_CLOSE: {
1034     typedef int16 (*SerialCallback)(uint32, uint32);
1035     static const SerialCallback serial_callbacks[] = {
1036     SerialNothing,
1037     SerialOpen,
1038     SerialPrimeIn,
1039     SerialPrimeOut,
1040     SerialControl,
1041     SerialStatus,
1042     SerialClose
1043     };
1044     GPR(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](GPR(3), GPR(4));
1045 gbeauche 1.16 break;
1046     }
1047     case NATIVE_GET_RESOURCE:
1048     case NATIVE_GET_1_RESOURCE:
1049     case NATIVE_GET_IND_RESOURCE:
1050     case NATIVE_GET_1_IND_RESOURCE:
1051     case NATIVE_R_GET_RESOURCE: {
1052     typedef void (*GetResourceCallback)(void);
1053     static const GetResourceCallback get_resource_callbacks[] = {
1054     get_resource,
1055     get_1_resource,
1056     get_ind_resource,
1057     get_1_ind_resource,
1058     r_get_resource
1059     };
1060     get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
1061 gbeauche 1.1 break;
1062     }
1063 gbeauche 1.2 case NATIVE_DISABLE_INTERRUPT:
1064     DisableInterrupt();
1065     break;
1066     case NATIVE_ENABLE_INTERRUPT:
1067     EnableInterrupt();
1068 gbeauche 1.7 break;
1069     case NATIVE_MAKE_EXECUTABLE:
1070     MakeExecutable(0, (void *)GPR(4), GPR(5));
1071 gbeauche 1.26 break;
1072     case NATIVE_CHECK_LOAD_INVOC:
1073     check_load_invoc(GPR(3), GPR(4), GPR(5));
1074 gbeauche 1.2 break;
1075 gbeauche 1.1 default:
1076     printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
1077     QuitEmulator();
1078     break;
1079     }
1080 gbeauche 1.15
1081     #if EMUL_TIME_STATS
1082     native_exec_time += (clock() - native_exec_start);
1083     #endif
1084 gbeauche 1.1 }
1085    
1086     /*
1087     * Execute 68k subroutine (must be ended with EXEC_RETURN)
1088     * This must only be called by the emul_thread when in EMUL_OP mode
1089     * r->a[7] is unused, the routine runs on the caller's stack
1090     */
1091    
1092     void Execute68k(uint32 pc, M68kRegisters *r)
1093     {
1094     current_cpu->execute_68k(pc, r);
1095     }
1096    
1097     /*
1098     * Execute 68k A-Trap from EMUL_OP routine
1099     * r->a[7] is unused, the routine runs on the caller's stack
1100     */
1101    
1102     void Execute68kTrap(uint16 trap, M68kRegisters *r)
1103     {
1104 gbeauche 1.21 SheepVar proc_var(4);
1105     uint32 proc = proc_var.addr();
1106     WriteMacInt16(proc, trap);
1107     WriteMacInt16(proc + 2, M68K_RTS);
1108     Execute68k(proc, r);
1109 gbeauche 1.1 }
1110    
1111     /*
1112     * Call MacOS PPC code
1113     */
1114    
1115     uint32 call_macos(uint32 tvect)
1116     {
1117     return current_cpu->execute_macos_code(tvect, 0, NULL);
1118     }
1119    
1120     uint32 call_macos1(uint32 tvect, uint32 arg1)
1121     {
1122     const uint32 args[] = { arg1 };
1123     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1124     }
1125    
1126     uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1127     {
1128     const uint32 args[] = { arg1, arg2 };
1129     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1130     }
1131    
1132     uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1133     {
1134     const uint32 args[] = { arg1, arg2, arg3 };
1135     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1136     }
1137    
1138     uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1139     {
1140     const uint32 args[] = { arg1, arg2, arg3, arg4 };
1141     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1142     }
1143    
1144     uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1145     {
1146     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1147     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1148     }
1149    
1150     uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1151     {
1152     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1153     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1154     }
1155    
1156     uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1157     {
1158     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1159     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1160     }
1161    
1162     /*
1163     * Resource Manager thunks
1164     */
1165    
1166     void get_resource(void)
1167     {
1168     current_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1169     }
1170    
1171     void get_1_resource(void)
1172     {
1173     current_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1174     }
1175    
1176     void get_ind_resource(void)
1177     {
1178     current_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1179     }
1180    
1181     void get_1_ind_resource(void)
1182     {
1183     current_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1184     }
1185    
1186     void r_get_resource(void)
1187     {
1188     current_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1189     }