ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.64
Committed: 2005-06-30T10:17:58Z (18 years, 10 months ago) by gbeauche
Branch: MAIN
Changes since 1.63: +1 -0 lines
Log Message:
Improve idle wait mechanism. Now, the emulator thread can be suspended
(idle_wait) until events arrived and notified through TriggerInterrupt().
i.e. we no longer sleep a fixed amount of time on platforms that support
a thread wait/signal mechanism.

File Contents

# User Rev Content
1 gbeauche 1.1 /*
2     * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3     *
4 gbeauche 1.57 * SheepShaver (C) 1997-2005 Christian Bauer and Marc Hellwig
5 gbeauche 1.1 *
6     * This program is free software; you can redistribute it and/or modify
7     * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation; either version 2 of the License, or
9     * (at your option) any later version.
10     *
11     * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15     *
16     * You should have received a copy of the GNU General Public License
17     * along with this program; if not, write to the Free Software
18     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19     */
20    
21     #include "sysdeps.h"
22     #include "cpu_emulation.h"
23     #include "main.h"
24 gbeauche 1.3 #include "prefs.h"
25 gbeauche 1.1 #include "xlowmem.h"
26     #include "emul_op.h"
27     #include "rom_patches.h"
28     #include "macos_util.h"
29     #include "block-alloc.hpp"
30     #include "sigsegv.h"
31     #include "cpu/ppc/ppc-cpu.hpp"
32     #include "cpu/ppc/ppc-operations.hpp"
33 gbeauche 1.18 #include "cpu/ppc/ppc-instructions.hpp"
34 gbeauche 1.21 #include "thunks.h"
35 gbeauche 1.1
36     // Used for NativeOp trampolines
37     #include "video.h"
38     #include "name_registry.h"
39     #include "serial.h"
40 gbeauche 1.16 #include "ether.h"
41 gbeauche 1.37 #include "timer.h"
42 gbeauche 1.1
43     #include <stdio.h>
44 gbeauche 1.31 #include <stdlib.h>
45 gbeauche 1.53 #ifdef HAVE_MALLOC_H
46     #include <malloc.h>
47     #endif
48 gbeauche 1.1
49 gbeauche 1.47 #ifdef USE_SDL_VIDEO
50     #include <SDL_events.h>
51     #endif
52    
53 gbeauche 1.1 #if ENABLE_MON
54     #include "mon.h"
55     #include "mon_disass.h"
56     #endif
57    
58 gbeauche 1.10 #define DEBUG 0
59 gbeauche 1.1 #include "debug.h"
60    
61 gbeauche 1.15 // Emulation time statistics
62 gbeauche 1.44 #ifndef EMUL_TIME_STATS
63     #define EMUL_TIME_STATS 0
64     #endif
65 gbeauche 1.15
66     #if EMUL_TIME_STATS
67     static clock_t emul_start_time;
68 gbeauche 1.44 static uint32 interrupt_count = 0, ppc_interrupt_count = 0;
69 gbeauche 1.15 static clock_t interrupt_time = 0;
70     static uint32 exec68k_count = 0;
71     static clock_t exec68k_time = 0;
72     static uint32 native_exec_count = 0;
73     static clock_t native_exec_time = 0;
74     static uint32 macos_exec_count = 0;
75     static clock_t macos_exec_time = 0;
76     #endif
77    
78 gbeauche 1.1 static void enter_mon(void)
79     {
80     // Start up mon in real-mode
81     #if ENABLE_MON
82     char *arg[4] = {"mon", "-m", "-r", NULL};
83     mon(3, arg);
84     #endif
85     }
86    
87 gbeauche 1.23 // From main_*.cpp
88     extern uintptr SignalStackBase();
89    
90 gbeauche 1.26 // From rsrc_patches.cpp
91     extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
92    
93 gbeauche 1.21 // PowerPC EmulOp to exit from emulation looop
94     const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
95    
96 gbeauche 1.1 // Enable Execute68k() safety checks?
97     #define SAFE_EXEC_68K 1
98    
99     // Save FP state in Execute68k()?
100     #define SAVE_FP_EXEC_68K 1
101    
102     // Interrupts in EMUL_OP mode?
103     #define INTERRUPTS_IN_EMUL_OP_MODE 1
104    
105     // Interrupts in native mode?
106     #define INTERRUPTS_IN_NATIVE_MODE 1
107    
108     // Pointer to Kernel Data
109 gbeauche 1.52 static KernelData * kernel_data;
110 gbeauche 1.1
111 gbeauche 1.17 // SIGSEGV handler
112 gbeauche 1.48 sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
113 gbeauche 1.17
114 gbeauche 1.38 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
115     // Special trampolines for EmulOp and NativeOp
116     static uint8 *emul_op_trampoline;
117     static uint8 *native_op_trampoline;
118     #endif
119    
120 gbeauche 1.20 // JIT Compiler enabled?
121     static inline bool enable_jit_p()
122     {
123     return PrefsFindBool("jit");
124     }
125    
126 gbeauche 1.1
127     /**
128     * PowerPC emulator glue with special 'sheep' opcodes
129     **/
130    
131 gbeauche 1.18 enum {
132     PPC_I(SHEEP) = PPC_I(MAX),
133     PPC_I(SHEEP_MAX)
134     };
135    
136 gbeauche 1.1 class sheepshaver_cpu
137     : public powerpc_cpu
138     {
139     void init_decoder();
140     void execute_sheep(uint32 opcode);
141    
142     public:
143    
144 gbeauche 1.10 // Constructor
145     sheepshaver_cpu();
146 gbeauche 1.1
147 gbeauche 1.24 // CR & XER accessors
148 gbeauche 1.1 uint32 get_cr() const { return cr().get(); }
149     void set_cr(uint32 v) { cr().set(v); }
150 gbeauche 1.24 uint32 get_xer() const { return xer().get(); }
151     void set_xer(uint32 v) { xer().set(v); }
152 gbeauche 1.1
153 gbeauche 1.38 // Execute NATIVE_OP routine
154     void execute_native_op(uint32 native_op);
155    
156 gbeauche 1.26 // Execute EMUL_OP routine
157     void execute_emul_op(uint32 emul_op);
158    
159 gbeauche 1.1 // Execute 68k routine
160     void execute_68k(uint32 entry, M68kRegisters *r);
161    
162 gbeauche 1.2 // Execute ppc routine
163     void execute_ppc(uint32 entry);
164    
165 gbeauche 1.1 // Execute MacOS/PPC code
166     uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
167    
168 gbeauche 1.53 #if PPC_ENABLE_JIT
169 gbeauche 1.26 // Compile one instruction
170 gbeauche 1.38 virtual int compile1(codegen_context_t & cg_context);
171 gbeauche 1.53 #endif
172 gbeauche 1.1 // Resource manager thunk
173     void get_resource(uint32 old_get_resource);
174    
175     // Handle MacOS interrupt
176 gbeauche 1.4 void interrupt(uint32 entry);
177 gbeauche 1.2
178 gbeauche 1.17 // Make sure the SIGSEGV handler can access CPU registers
179     friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
180 gbeauche 1.54
181     // Memory allocator returning areas aligned on 16-byte boundaries
182     void *operator new(size_t size);
183     void operator delete(void *p);
184 gbeauche 1.1 };
185    
186 gbeauche 1.61 // Memory allocator returning sheepshaver_cpu objects aligned on 16-byte boundaries
187     // FORMAT: [ alignment ] magic identifier, offset to malloc'ed data, sheepshaver_cpu data
188 gbeauche 1.54 void *sheepshaver_cpu::operator new(size_t size)
189 gbeauche 1.29 {
190 gbeauche 1.61 const int ALIGN = 16;
191 gbeauche 1.29
192 gbeauche 1.61 // Allocate enough space for sheepshaver_cpu data + signature + align pad
193     uint8 *ptr = (uint8 *)malloc(size + ALIGN * 2);
194     if (ptr == NULL)
195 gbeauche 1.29 throw std::bad_alloc();
196    
197 gbeauche 1.61 // Align memory
198     int ofs = 0;
199     while ((((uintptr)ptr) % ALIGN) != 0)
200     ofs++, ptr++;
201    
202     // Insert signature and offset
203     struct aligned_block_t {
204     uint32 pad[(ALIGN - 8) / 4];
205     uint32 signature;
206     uint32 offset;
207     uint8 data[sizeof(sheepshaver_cpu)];
208     };
209     aligned_block_t *blk = (aligned_block_t *)ptr;
210     blk->signature = FOURCC('S','C','P','U');
211     blk->offset = ofs + (&blk->data[0] - (uint8 *)blk);
212     assert((((uintptr)&blk->data) % ALIGN) == 0);
213     return &blk->data[0];
214 gbeauche 1.29 }
215    
216 gbeauche 1.54 void sheepshaver_cpu::operator delete(void *p)
217 gbeauche 1.29 {
218 gbeauche 1.61 uint32 *blk = (uint32 *)p;
219     assert(blk[-2] == FOURCC('S','C','P','U'));
220     void *ptr = (void *)(((uintptr)p) - blk[-1]);
221     free(ptr);
222 gbeauche 1.29 }
223 gbeauche 1.1
224 gbeauche 1.10 sheepshaver_cpu::sheepshaver_cpu()
225 gbeauche 1.20 : powerpc_cpu(enable_jit_p())
226 gbeauche 1.10 {
227     init_decoder();
228     }
229    
230 gbeauche 1.1 void sheepshaver_cpu::init_decoder()
231     {
232     static const instr_info_t sheep_ii_table[] = {
233     { "sheep",
234 gbeauche 1.13 (execute_pmf)&sheepshaver_cpu::execute_sheep,
235 gbeauche 1.1 NULL,
236 gbeauche 1.18 PPC_I(SHEEP),
237 gbeauche 1.7 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
238 gbeauche 1.1 }
239     };
240    
241     const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
242     D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
243    
244     for (int i = 0; i < ii_count; i++) {
245     const instr_info_t * ii = &sheep_ii_table[i];
246     init_decoder_entry(ii);
247     }
248     }
249    
250 gbeauche 1.2 /* NativeOp instruction format:
251 gbeauche 1.35 +------------+-------------------------+--+-----------+------------+
252     | 6 | |FN| OP | 2 |
253     +------------+-------------------------+--+-----------+------------+
254     0 5 |6 18 19 20 25 26 31
255 gbeauche 1.2 */
256    
257 gbeauche 1.35 typedef bit_field< 19, 19 > FN_field;
258     typedef bit_field< 20, 25 > NATIVE_OP_field;
259 gbeauche 1.2 typedef bit_field< 26, 31 > EMUL_OP_field;
260    
261 gbeauche 1.26 // Execute EMUL_OP routine
262     void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
263     {
264     M68kRegisters r68;
265     WriteMacInt32(XLM_68K_R25, gpr(25));
266     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
267     for (int i = 0; i < 8; i++)
268     r68.d[i] = gpr(8 + i);
269     for (int i = 0; i < 7; i++)
270     r68.a[i] = gpr(16 + i);
271     r68.a[7] = gpr(1);
272 gbeauche 1.62 uint32 saved_cr = get_cr() & 0xff9fffff; // mask_operand::compute(11, 8)
273 gbeauche 1.26 uint32 saved_xer = get_xer();
274     EmulOp(&r68, gpr(24), emul_op);
275     set_cr(saved_cr);
276     set_xer(saved_xer);
277     for (int i = 0; i < 8; i++)
278     gpr(8 + i) = r68.d[i];
279     for (int i = 0; i < 7; i++)
280     gpr(16 + i) = r68.a[i];
281     gpr(1) = r68.a[7];
282     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
283     }
284    
285 gbeauche 1.1 // Execute SheepShaver instruction
286     void sheepshaver_cpu::execute_sheep(uint32 opcode)
287     {
288     // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
289     assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
290    
291     switch (opcode & 0x3f) {
292     case 0: // EMUL_RETURN
293     QuitEmulator();
294     break;
295 gbeauche 1.8
296 gbeauche 1.1 case 1: // EXEC_RETURN
297 gbeauche 1.12 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
298 gbeauche 1.1 break;
299    
300     case 2: // EXEC_NATIVE
301 gbeauche 1.38 execute_native_op(NATIVE_OP_field::extract(opcode));
302 gbeauche 1.2 if (FN_field::test(opcode))
303     pc() = lr();
304     else
305     pc() += 4;
306 gbeauche 1.1 break;
307    
308 gbeauche 1.26 default: // EMUL_OP
309     execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
310     pc() += 4;
311     break;
312     }
313     }
314    
315     // Compile one instruction
316 gbeauche 1.53 #if PPC_ENABLE_JIT
317 gbeauche 1.38 int sheepshaver_cpu::compile1(codegen_context_t & cg_context)
318 gbeauche 1.26 {
319     const instr_info_t *ii = cg_context.instr_info;
320     if (ii->mnemo != PPC_I(SHEEP))
321 gbeauche 1.38 return COMPILE_FAILURE;
322 gbeauche 1.26
323 gbeauche 1.38 int status = COMPILE_FAILURE;
324 gbeauche 1.26 powerpc_dyngen & dg = cg_context.codegen;
325     uint32 opcode = cg_context.opcode;
326    
327     switch (opcode & 0x3f) {
328     case 0: // EMUL_RETURN
329     dg.gen_invoke(QuitEmulator);
330 gbeauche 1.38 status = COMPILE_CODE_OK;
331 gbeauche 1.26 break;
332    
333     case 1: // EXEC_RETURN
334     dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
335 gbeauche 1.38 // Don't check for pending interrupts, we do know we have to
336     // get out of this block ASAP
337     dg.gen_exec_return();
338     status = COMPILE_EPILOGUE_OK;
339 gbeauche 1.26 break;
340    
341     case 2: { // EXEC_NATIVE
342     uint32 selector = NATIVE_OP_field::extract(opcode);
343     switch (selector) {
344 gbeauche 1.38 #if !PPC_REENTRANT_JIT
345     // Filter out functions that may invoke Execute68k() or
346     // CallMacOS(), this would break reentrancy as they could
347     // invalidate the translation cache and even overwrite
348     // continuation code when we are done with them.
349 gbeauche 1.26 case NATIVE_PATCH_NAME_REGISTRY:
350     dg.gen_invoke(DoPatchNameRegistry);
351 gbeauche 1.38 status = COMPILE_CODE_OK;
352 gbeauche 1.26 break;
353     case NATIVE_VIDEO_INSTALL_ACCEL:
354     dg.gen_invoke(VideoInstallAccel);
355 gbeauche 1.38 status = COMPILE_CODE_OK;
356 gbeauche 1.26 break;
357     case NATIVE_VIDEO_VBL:
358     dg.gen_invoke(VideoVBL);
359 gbeauche 1.38 status = COMPILE_CODE_OK;
360 gbeauche 1.26 break;
361     case NATIVE_GET_RESOURCE:
362     case NATIVE_GET_1_RESOURCE:
363     case NATIVE_GET_IND_RESOURCE:
364     case NATIVE_GET_1_IND_RESOURCE:
365     case NATIVE_R_GET_RESOURCE: {
366     static const uint32 get_resource_ptr[] = {
367     XLM_GET_RESOURCE,
368     XLM_GET_1_RESOURCE,
369     XLM_GET_IND_RESOURCE,
370     XLM_GET_1_IND_RESOURCE,
371     XLM_R_GET_RESOURCE
372     };
373     uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
374     typedef void (*func_t)(dyngen_cpu_base, uint32);
375     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
376     dg.gen_invoke_CPU_im(func, old_get_resource);
377 gbeauche 1.38 status = COMPILE_CODE_OK;
378 gbeauche 1.26 break;
379     }
380     case NATIVE_CHECK_LOAD_INVOC:
381     dg.gen_load_T0_GPR(3);
382     dg.gen_load_T1_GPR(4);
383     dg.gen_se_16_32_T1();
384     dg.gen_load_T2_GPR(5);
385     dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
386 gbeauche 1.38 status = COMPILE_CODE_OK;
387     break;
388     #endif
389 gbeauche 1.35 case NATIVE_BITBLT:
390     dg.gen_load_T0_GPR(3);
391     dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt);
392 gbeauche 1.38 status = COMPILE_CODE_OK;
393 gbeauche 1.35 break;
394     case NATIVE_INVRECT:
395     dg.gen_load_T0_GPR(3);
396     dg.gen_invoke_T0((void (*)(uint32))NQD_invrect);
397 gbeauche 1.38 status = COMPILE_CODE_OK;
398 gbeauche 1.35 break;
399     case NATIVE_FILLRECT:
400     dg.gen_load_T0_GPR(3);
401     dg.gen_invoke_T0((void (*)(uint32))NQD_fillrect);
402 gbeauche 1.38 status = COMPILE_CODE_OK;
403 gbeauche 1.26 break;
404     }
405 gbeauche 1.38 // Could we fully translate this NativeOp?
406 gbeauche 1.42 if (status == COMPILE_CODE_OK) {
407     if (!FN_field::test(opcode))
408     cg_context.done_compile = false;
409     else {
410 gbeauche 1.26 dg.gen_load_A0_LR();
411     dg.gen_set_PC_A0();
412 gbeauche 1.42 cg_context.done_compile = true;
413 gbeauche 1.26 }
414 gbeauche 1.38 break;
415     }
416     #if PPC_REENTRANT_JIT
417     // Try to execute NativeOp trampoline
418 gbeauche 1.42 if (!FN_field::test(opcode))
419     dg.gen_set_PC_im(cg_context.pc + 4);
420     else {
421     dg.gen_load_A0_LR();
422     dg.gen_set_PC_A0();
423     }
424 gbeauche 1.38 dg.gen_mov_32_T0_im(selector);
425     dg.gen_jmp(native_op_trampoline);
426     cg_context.done_compile = true;
427     status = COMPILE_EPILOGUE_OK;
428     break;
429     #endif
430     // Invoke NativeOp handler
431 gbeauche 1.42 if (!FN_field::test(opcode)) {
432     typedef void (*func_t)(dyngen_cpu_base, uint32);
433     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
434     dg.gen_invoke_CPU_im(func, selector);
435     cg_context.done_compile = false;
436     status = COMPILE_CODE_OK;
437     }
438     // Otherwise, let it generate a call to execute_sheep() which
439     // will cause necessary updates to the program counter
440 gbeauche 1.26 break;
441     }
442    
443 gbeauche 1.1 default: { // EMUL_OP
444 gbeauche 1.37 uint32 emul_op = EMUL_OP_field::extract(opcode) - 3;
445 gbeauche 1.38 #if PPC_REENTRANT_JIT
446     // Try to execute EmulOp trampoline
447     dg.gen_set_PC_im(cg_context.pc + 4);
448     dg.gen_mov_32_T0_im(emul_op);
449     dg.gen_jmp(emul_op_trampoline);
450     cg_context.done_compile = true;
451     status = COMPILE_EPILOGUE_OK;
452     break;
453     #endif
454     // Invoke EmulOp handler
455 gbeauche 1.26 typedef void (*func_t)(dyngen_cpu_base, uint32);
456     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
457 gbeauche 1.37 dg.gen_invoke_CPU_im(func, emul_op);
458 gbeauche 1.26 cg_context.done_compile = false;
459 gbeauche 1.38 status = COMPILE_CODE_OK;
460 gbeauche 1.1 break;
461     }
462     }
463 gbeauche 1.38 return status;
464 gbeauche 1.53 }
465 gbeauche 1.26 #endif
466 gbeauche 1.1
467     // Handle MacOS interrupt
468 gbeauche 1.4 void sheepshaver_cpu::interrupt(uint32 entry)
469 gbeauche 1.1 {
470 gbeauche 1.15 #if EMUL_TIME_STATS
471 gbeauche 1.44 ppc_interrupt_count++;
472 gbeauche 1.15 const clock_t interrupt_start = clock();
473     #endif
474    
475 gbeauche 1.2 // Save program counters and branch registers
476     uint32 saved_pc = pc();
477     uint32 saved_lr = lr();
478     uint32 saved_ctr= ctr();
479 gbeauche 1.4 uint32 saved_sp = gpr(1);
480 gbeauche 1.2
481 gbeauche 1.4 // Initialize stack pointer to SheepShaver alternate stack base
482 gbeauche 1.23 gpr(1) = SignalStackBase() - 64;
483 gbeauche 1.1
484     // Build trampoline to return from interrupt
485 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
486 gbeauche 1.1
487     // Prepare registers for nanokernel interrupt routine
488 gbeauche 1.5 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
489     kernel_data->v[0x018 >> 2] = htonl(gpr(6));
490 gbeauche 1.1
491 gbeauche 1.5 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
492 gbeauche 1.2 assert(gpr(6) != 0);
493 gbeauche 1.1 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
494     WriteMacInt32(gpr(6) + 0x144, gpr(8));
495     WriteMacInt32(gpr(6) + 0x14c, gpr(9));
496     WriteMacInt32(gpr(6) + 0x154, gpr(10));
497     WriteMacInt32(gpr(6) + 0x15c, gpr(11));
498     WriteMacInt32(gpr(6) + 0x164, gpr(12));
499     WriteMacInt32(gpr(6) + 0x16c, gpr(13));
500    
501     gpr(1) = KernelDataAddr;
502 gbeauche 1.5 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
503 gbeauche 1.1 gpr(8) = 0;
504 gbeauche 1.21 gpr(10) = trampoline.addr();
505     gpr(12) = trampoline.addr();
506 gbeauche 1.8 gpr(13) = get_cr();
507 gbeauche 1.1
508     // rlwimi. r7,r7,8,0,0
509     uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
510     record_cr0(result);
511     gpr(7) = result;
512    
513     gpr(11) = 0xf072; // MSR (SRR1)
514 gbeauche 1.8 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
515 gbeauche 1.1
516     // Enter nanokernel
517     execute(entry);
518    
519 gbeauche 1.2 // Restore program counters and branch registers
520     pc() = saved_pc;
521     lr() = saved_lr;
522     ctr()= saved_ctr;
523 gbeauche 1.4 gpr(1) = saved_sp;
524 gbeauche 1.15
525     #if EMUL_TIME_STATS
526     interrupt_time += (clock() - interrupt_start);
527     #endif
528 gbeauche 1.1 }
529    
530     // Execute 68k routine
531     void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
532     {
533 gbeauche 1.15 #if EMUL_TIME_STATS
534     exec68k_count++;
535     const clock_t exec68k_start = clock();
536     #endif
537    
538 gbeauche 1.1 #if SAFE_EXEC_68K
539     if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
540     printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
541     #endif
542    
543     // Save program counters and branch registers
544     uint32 saved_pc = pc();
545     uint32 saved_lr = lr();
546     uint32 saved_ctr= ctr();
547 gbeauche 1.8 uint32 saved_cr = get_cr();
548 gbeauche 1.1
549     // Create MacOS stack frame
550 gbeauche 1.6 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
551 gbeauche 1.1 uint32 sp = gpr(1);
552 gbeauche 1.6 gpr(1) -= 56;
553 gbeauche 1.1 WriteMacInt32(gpr(1), sp);
554    
555     // Save PowerPC registers
556 gbeauche 1.6 uint32 saved_GPRs[19];
557     memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
558 gbeauche 1.1 #if SAVE_FP_EXEC_68K
559 gbeauche 1.6 double saved_FPRs[18];
560     memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
561 gbeauche 1.1 #endif
562    
563     // Setup registers for 68k emulator
564 gbeauche 1.2 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
565 gbeauche 1.1 for (int i = 0; i < 8; i++) // d[0]..d[7]
566     gpr(8 + i) = r->d[i];
567     for (int i = 0; i < 7; i++) // a[0]..a[6]
568     gpr(16 + i) = r->a[i];
569     gpr(23) = 0;
570     gpr(24) = entry;
571     gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
572     gpr(26) = 0;
573     gpr(28) = 0; // VBR
574 gbeauche 1.5 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
575     gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
576 gbeauche 1.1 gpr(31) = KernelDataAddr + 0x1000;
577    
578     // Push return address (points to EXEC_RETURN opcode) on stack
579     gpr(1) -= 4;
580     WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
581    
582     // Rentering 68k emulator
583     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
584    
585     // Set r0 to 0 for 68k emulator
586     gpr(0) = 0;
587    
588     // Execute 68k opcode
589     uint32 opcode = ReadMacInt16(gpr(24));
590     gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
591     gpr(29) += opcode * 8;
592     execute(gpr(29));
593    
594     // Save r25 (contains current 68k interrupt level)
595     WriteMacInt32(XLM_68K_R25, gpr(25));
596    
597     // Reentering EMUL_OP mode
598     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
599    
600     // Save 68k registers
601     for (int i = 0; i < 8; i++) // d[0]..d[7]
602     r->d[i] = gpr(8 + i);
603     for (int i = 0; i < 7; i++) // a[0]..a[6]
604     r->a[i] = gpr(16 + i);
605    
606     // Restore PowerPC registers
607 gbeauche 1.6 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
608 gbeauche 1.1 #if SAVE_FP_EXEC_68K
609 gbeauche 1.6 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
610 gbeauche 1.1 #endif
611    
612     // Cleanup stack
613 gbeauche 1.6 gpr(1) += 56;
614 gbeauche 1.1
615     // Restore program counters and branch registers
616     pc() = saved_pc;
617     lr() = saved_lr;
618     ctr()= saved_ctr;
619 gbeauche 1.8 set_cr(saved_cr);
620 gbeauche 1.15
621     #if EMUL_TIME_STATS
622     exec68k_time += (clock() - exec68k_start);
623     #endif
624 gbeauche 1.1 }
625    
626     // Call MacOS PPC code
627     uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
628     {
629 gbeauche 1.15 #if EMUL_TIME_STATS
630     macos_exec_count++;
631     const clock_t macos_exec_start = clock();
632     #endif
633    
634 gbeauche 1.1 // Save program counters and branch registers
635     uint32 saved_pc = pc();
636     uint32 saved_lr = lr();
637     uint32 saved_ctr= ctr();
638    
639     // Build trampoline with EXEC_RETURN
640 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
641     lr() = trampoline.addr();
642 gbeauche 1.1
643     gpr(1) -= 64; // Create stack frame
644     uint32 proc = ReadMacInt32(tvect); // Get routine address
645     uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
646    
647     // Save PowerPC registers
648     uint32 regs[8];
649     regs[0] = gpr(2);
650     for (int i = 0; i < nargs; i++)
651     regs[i + 1] = gpr(i + 3);
652    
653     // Prepare and call MacOS routine
654     gpr(2) = toc;
655     for (int i = 0; i < nargs; i++)
656     gpr(i + 3) = args[i];
657     execute(proc);
658     uint32 retval = gpr(3);
659    
660     // Restore PowerPC registers
661     for (int i = 0; i <= nargs; i++)
662     gpr(i + 2) = regs[i];
663    
664     // Cleanup stack
665     gpr(1) += 64;
666    
667     // Restore program counters and branch registers
668     pc() = saved_pc;
669     lr() = saved_lr;
670     ctr()= saved_ctr;
671    
672 gbeauche 1.15 #if EMUL_TIME_STATS
673     macos_exec_time += (clock() - macos_exec_start);
674     #endif
675    
676 gbeauche 1.1 return retval;
677     }
678    
679 gbeauche 1.2 // Execute ppc routine
680     inline void sheepshaver_cpu::execute_ppc(uint32 entry)
681     {
682     // Save branch registers
683     uint32 saved_lr = lr();
684    
685 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
686     WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
687     lr() = trampoline.addr();
688 gbeauche 1.2
689     execute(entry);
690    
691     // Restore branch registers
692     lr() = saved_lr;
693     }
694    
695 gbeauche 1.1 // Resource Manager thunk
696     inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
697     {
698 gbeauche 1.2 uint32 type = gpr(3);
699     int16 id = gpr(4);
700    
701     // Create stack frame
702     gpr(1) -= 56;
703    
704     // Call old routine
705     execute_ppc(old_get_resource);
706    
707     // Call CheckLoad()
708 gbeauche 1.5 uint32 handle = gpr(3);
709 gbeauche 1.2 check_load_invoc(type, id, handle);
710 gbeauche 1.5 gpr(3) = handle;
711 gbeauche 1.2
712     // Cleanup stack
713     gpr(1) += 56;
714 gbeauche 1.1 }
715    
716    
717     /**
718     * SheepShaver CPU engine interface
719     **/
720    
721 gbeauche 1.41 // PowerPC CPU emulator
722     static sheepshaver_cpu *ppc_cpu = NULL;
723 gbeauche 1.1
724 gbeauche 1.7 void FlushCodeCache(uintptr start, uintptr end)
725     {
726     D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
727 gbeauche 1.41 ppc_cpu->invalidate_cache_range(start, end);
728 gbeauche 1.2 }
729    
730 gbeauche 1.1 // Dump PPC registers
731     static void dump_registers(void)
732     {
733 gbeauche 1.41 ppc_cpu->dump_registers();
734 gbeauche 1.1 }
735    
736     // Dump log
737     static void dump_log(void)
738     {
739 gbeauche 1.41 ppc_cpu->dump_log();
740 gbeauche 1.1 }
741    
742     /*
743     * Initialize CPU emulation
744     */
745    
746 gbeauche 1.48 sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
747 gbeauche 1.1 {
748     #if ENABLE_VOSF
749 gbeauche 1.3 // Handle screen fault
750     extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
751     if (Screen_fault_handler(fault_address, fault_instruction))
752     return SIGSEGV_RETURN_SUCCESS;
753 gbeauche 1.1 #endif
754 gbeauche 1.3
755     const uintptr addr = (uintptr)fault_address;
756     #if HAVE_SIGSEGV_SKIP_INSTRUCTION
757     // Ignore writes to ROM
758 gbeauche 1.52 if ((addr - (uintptr)ROMBaseHost) < ROM_SIZE)
759 gbeauche 1.3 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
760    
761 gbeauche 1.17 // Get program counter of target CPU
762 gbeauche 1.41 sheepshaver_cpu * const cpu = ppc_cpu;
763 gbeauche 1.17 const uint32 pc = cpu->pc();
764    
765     // Fault in Mac ROM or RAM?
766 gbeauche 1.43 bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize)) || (pc >= DR_CACHE_BASE && pc < (DR_CACHE_BASE + DR_CACHE_SIZE));
767 gbeauche 1.17 if (mac_fault) {
768    
769     // "VM settings" during MacOS 8 installation
770     if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
771     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
772    
773     // MacOS 8.5 installation
774     else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
775     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
776    
777     // MacOS 8 serial drivers on startup
778     else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
779     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
780    
781     // MacOS 8.1 serial drivers on startup
782     else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
783     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
784     else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
785     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
786 gbeauche 1.43
787     // MacOS 8.6 serial drivers on startup (with DR Cache and OldWorld ROM)
788     else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(16) == 0xf3012002 || cpu->gpr(16) == 0xf3012000))
789     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
790     else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
791     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
792 gbeauche 1.17
793 gbeauche 1.30 // Ignore writes to the zero page
794     else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
795     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
796    
797 gbeauche 1.17 // Ignore all other faults, if requested
798     if (PrefsFindBool("ignoresegv"))
799     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
800     }
801 gbeauche 1.3 #else
802     #error "FIXME: You don't have the capability to skip instruction within signal handlers"
803 gbeauche 1.1 #endif
804 gbeauche 1.3
805 gbeauche 1.60 fprintf(stderr, "SIGSEGV\n");
806     fprintf(stderr, " pc %p\n", fault_instruction);
807     fprintf(stderr, " ea %p\n", fault_address);
808 gbeauche 1.1 dump_registers();
809 gbeauche 1.41 ppc_cpu->dump_log();
810 gbeauche 1.1 enter_mon();
811     QuitEmulator();
812 gbeauche 1.3
813     return SIGSEGV_RETURN_FAILURE;
814 gbeauche 1.1 }
815    
816     void init_emul_ppc(void)
817     {
818 gbeauche 1.52 // Get pointer to KernelData in host address space
819     kernel_data = (KernelData *)Mac2HostAddr(KERNEL_DATA_BASE);
820    
821 gbeauche 1.1 // Initialize main CPU emulator
822 gbeauche 1.41 ppc_cpu = new sheepshaver_cpu();
823     ppc_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
824     ppc_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
825 gbeauche 1.1 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
826    
827     #if ENABLE_MON
828     // Install "regs" command in cxmon
829     mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
830     mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
831     #endif
832 gbeauche 1.15
833     #if EMUL_TIME_STATS
834     emul_start_time = clock();
835     #endif
836 gbeauche 1.1 }
837    
838     /*
839 gbeauche 1.14 * Deinitialize emulation
840     */
841    
842     void exit_emul_ppc(void)
843     {
844 gbeauche 1.15 #if EMUL_TIME_STATS
845     clock_t emul_end_time = clock();
846    
847     printf("### Statistics for SheepShaver emulation parts\n");
848     const clock_t emul_time = emul_end_time - emul_start_time;
849     printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
850     printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
851     (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
852 gbeauche 1.44 printf("Total ppc interrupt count: %d (%2.1f %%)\n", ppc_interrupt_count,
853     (double(ppc_interrupt_count) * 100.0) / double(interrupt_count));
854 gbeauche 1.15
855     #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
856     printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
857     printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
858     double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
859     100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
860     } while (0)
861    
862     PRINT_STATS("Execute68k[Trap] execution", exec68k);
863     PRINT_STATS("NativeOp execution", native_exec);
864     PRINT_STATS("MacOS routine execution", macos_exec);
865    
866     #undef PRINT_STATS
867     printf("\n");
868     #endif
869    
870 gbeauche 1.41 delete ppc_cpu;
871 gbeauche 1.14 }
872    
873 gbeauche 1.38 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
874     // Initialize EmulOp trampolines
875     void init_emul_op_trampolines(basic_dyngen & dg)
876     {
877     typedef void (*func_t)(dyngen_cpu_base, uint32);
878     func_t func;
879    
880     // EmulOp
881     emul_op_trampoline = dg.gen_start();
882     func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
883     dg.gen_invoke_CPU_T0(func);
884     dg.gen_exec_return();
885     dg.gen_end();
886    
887     // NativeOp
888     native_op_trampoline = dg.gen_start();
889     func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
890     dg.gen_invoke_CPU_T0(func);
891     dg.gen_exec_return();
892     dg.gen_end();
893    
894     D(bug("EmulOp trampoline: %p\n", emul_op_trampoline));
895     D(bug("NativeOp trampoline: %p\n", native_op_trampoline));
896     }
897     #endif
898    
899 gbeauche 1.14 /*
900 gbeauche 1.1 * Emulation loop
901     */
902    
903     void emul_ppc(uint32 entry)
904     {
905 gbeauche 1.24 #if 0
906 gbeauche 1.41 ppc_cpu->start_log();
907 gbeauche 1.10 #endif
908     // start emulation loop and enable code translation or caching
909 gbeauche 1.41 ppc_cpu->execute(entry);
910 gbeauche 1.1 }
911    
912     /*
913     * Handle PowerPC interrupt
914     */
915    
916 gbeauche 1.2 void TriggerInterrupt(void)
917     {
918 gbeauche 1.64 idle_resume();
919 gbeauche 1.2 #if 0
920     WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
921     #else
922 gbeauche 1.10 // Trigger interrupt to main cpu only
923 gbeauche 1.41 if (ppc_cpu)
924     ppc_cpu->trigger_interrupt();
925 gbeauche 1.2 #endif
926     }
927    
928 gbeauche 1.58 void HandleInterrupt(powerpc_registers *r)
929 gbeauche 1.1 {
930 gbeauche 1.47 #ifdef USE_SDL_VIDEO
931     // We must fill in the events queue in the same thread that did call SDL_SetVideoMode()
932     SDL_PumpEvents();
933     #endif
934    
935 gbeauche 1.1 // Do nothing if interrupts are disabled
936 gbeauche 1.46 if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0)
937 gbeauche 1.1 return;
938    
939 gbeauche 1.63 // Update interrupt count
940 gbeauche 1.44 #if EMUL_TIME_STATS
941     interrupt_count++;
942     #endif
943 gbeauche 1.40
944 gbeauche 1.1 // Interrupt action depends on current run mode
945     switch (ReadMacInt32(XLM_RUN_MODE)) {
946     case MODE_68K:
947     // 68k emulator active, trigger 68k interrupt level 1
948     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
949 gbeauche 1.58 r->cr.set(r->cr.get() | tswap32(kernel_data->v[0x674 >> 2]));
950 gbeauche 1.1 break;
951    
952     #if INTERRUPTS_IN_NATIVE_MODE
953     case MODE_NATIVE:
954     // 68k emulator inactive, in nanokernel?
955 gbeauche 1.63 if (r->gpr[1] != KernelDataAddr) {
956 gbeauche 1.39
957 gbeauche 1.1 // Prepare for 68k interrupt level 1
958     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
959     WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
960     ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
961     | tswap32(kernel_data->v[0x674 >> 2]));
962    
963     // Execute nanokernel interrupt routine (this will activate the 68k emulator)
964 gbeauche 1.2 DisableInterrupt();
965 gbeauche 1.1 if (ROMType == ROMTYPE_NEWWORLD)
966 gbeauche 1.41 ppc_cpu->interrupt(ROM_BASE + 0x312b1c);
967 gbeauche 1.1 else
968 gbeauche 1.41 ppc_cpu->interrupt(ROM_BASE + 0x312a3c);
969 gbeauche 1.1 }
970     break;
971     #endif
972    
973     #if INTERRUPTS_IN_EMUL_OP_MODE
974     case MODE_EMUL_OP:
975     // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
976     if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
977 gbeauche 1.44 #if EMUL_TIME_STATS
978     const clock_t interrupt_start = clock();
979     #endif
980 gbeauche 1.1 #if 1
981     // Execute full 68k interrupt routine
982     M68kRegisters r;
983     uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
984     WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
985 gbeauche 1.53 static const uint8 proc_template[] = {
986 gbeauche 1.2 0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
987     0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
988     0x40, 0xe7, // move sr,-(sp) (saved SR)
989     0x20, 0x78, 0x00, 0x064, // move.l $64,a0
990     0x4e, 0xd0, // jmp (a0)
991     M68K_RTS >> 8, M68K_RTS & 0xff // @1
992 gbeauche 1.1 };
993 gbeauche 1.53 BUILD_SHEEPSHAVER_PROCEDURE(proc);
994     Execute68k(proc, &r);
995 gbeauche 1.1 WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
996     #else
997     // Only update cursor
998     if (HasMacStarted()) {
999     if (InterruptFlags & INTFLAG_VIA) {
1000     ClearInterruptFlag(INTFLAG_VIA);
1001     ADBInterrupt();
1002 gbeauche 1.22 ExecuteNative(NATIVE_VIDEO_VBL);
1003 gbeauche 1.1 }
1004     }
1005     #endif
1006 gbeauche 1.44 #if EMUL_TIME_STATS
1007     interrupt_time += (clock() - interrupt_start);
1008     #endif
1009 gbeauche 1.1 }
1010     break;
1011     #endif
1012     }
1013     }
1014    
1015     static void get_resource(void);
1016     static void get_1_resource(void);
1017     static void get_ind_resource(void);
1018     static void get_1_ind_resource(void);
1019     static void r_get_resource(void);
1020    
1021 gbeauche 1.38 // Execute NATIVE_OP routine
1022     void sheepshaver_cpu::execute_native_op(uint32 selector)
1023 gbeauche 1.1 {
1024 gbeauche 1.15 #if EMUL_TIME_STATS
1025     native_exec_count++;
1026     const clock_t native_exec_start = clock();
1027     #endif
1028    
1029 gbeauche 1.1 switch (selector) {
1030     case NATIVE_PATCH_NAME_REGISTRY:
1031     DoPatchNameRegistry();
1032     break;
1033     case NATIVE_VIDEO_INSTALL_ACCEL:
1034     VideoInstallAccel();
1035     break;
1036     case NATIVE_VIDEO_VBL:
1037     VideoVBL();
1038     break;
1039     case NATIVE_VIDEO_DO_DRIVER_IO:
1040 gbeauche 1.52 gpr(3) = (int32)(int16)VideoDoDriverIO(gpr(3), gpr(4), gpr(5), gpr(6), gpr(7));
1041 gbeauche 1.1 break;
1042 gbeauche 1.16 case NATIVE_ETHER_IRQ:
1043     EtherIRQ();
1044     break;
1045     case NATIVE_ETHER_INIT:
1046 gbeauche 1.38 gpr(3) = InitStreamModule((void *)gpr(3));
1047 gbeauche 1.16 break;
1048     case NATIVE_ETHER_TERM:
1049     TerminateStreamModule();
1050     break;
1051     case NATIVE_ETHER_OPEN:
1052 gbeauche 1.38 gpr(3) = ether_open((queue_t *)gpr(3), (void *)gpr(4), gpr(5), gpr(6), (void*)gpr(7));
1053 gbeauche 1.1 break;
1054 gbeauche 1.16 case NATIVE_ETHER_CLOSE:
1055 gbeauche 1.38 gpr(3) = ether_close((queue_t *)gpr(3), gpr(4), (void *)gpr(5));
1056 gbeauche 1.1 break;
1057 gbeauche 1.16 case NATIVE_ETHER_WPUT:
1058 gbeauche 1.38 gpr(3) = ether_wput((queue_t *)gpr(3), (mblk_t *)gpr(4));
1059 gbeauche 1.1 break;
1060 gbeauche 1.16 case NATIVE_ETHER_RSRV:
1061 gbeauche 1.38 gpr(3) = ether_rsrv((queue_t *)gpr(3));
1062 gbeauche 1.1 break;
1063 gbeauche 1.32 case NATIVE_SYNC_HOOK:
1064 gbeauche 1.38 gpr(3) = NQD_sync_hook(gpr(3));
1065 gbeauche 1.32 break;
1066     case NATIVE_BITBLT_HOOK:
1067 gbeauche 1.38 gpr(3) = NQD_bitblt_hook(gpr(3));
1068 gbeauche 1.32 break;
1069     case NATIVE_BITBLT:
1070 gbeauche 1.38 NQD_bitblt(gpr(3));
1071 gbeauche 1.32 break;
1072     case NATIVE_FILLRECT_HOOK:
1073 gbeauche 1.38 gpr(3) = NQD_fillrect_hook(gpr(3));
1074 gbeauche 1.32 break;
1075     case NATIVE_INVRECT:
1076 gbeauche 1.38 NQD_invrect(gpr(3));
1077 gbeauche 1.32 break;
1078 gbeauche 1.33 case NATIVE_FILLRECT:
1079 gbeauche 1.38 NQD_fillrect(gpr(3));
1080 gbeauche 1.32 break;
1081 gbeauche 1.1 case NATIVE_SERIAL_NOTHING:
1082     case NATIVE_SERIAL_OPEN:
1083     case NATIVE_SERIAL_PRIME_IN:
1084     case NATIVE_SERIAL_PRIME_OUT:
1085     case NATIVE_SERIAL_CONTROL:
1086     case NATIVE_SERIAL_STATUS:
1087     case NATIVE_SERIAL_CLOSE: {
1088     typedef int16 (*SerialCallback)(uint32, uint32);
1089     static const SerialCallback serial_callbacks[] = {
1090     SerialNothing,
1091     SerialOpen,
1092     SerialPrimeIn,
1093     SerialPrimeOut,
1094     SerialControl,
1095     SerialStatus,
1096     SerialClose
1097     };
1098 gbeauche 1.38 gpr(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](gpr(3), gpr(4));
1099 gbeauche 1.16 break;
1100     }
1101     case NATIVE_GET_RESOURCE:
1102     case NATIVE_GET_1_RESOURCE:
1103     case NATIVE_GET_IND_RESOURCE:
1104     case NATIVE_GET_1_IND_RESOURCE:
1105     case NATIVE_R_GET_RESOURCE: {
1106     typedef void (*GetResourceCallback)(void);
1107     static const GetResourceCallback get_resource_callbacks[] = {
1108 gbeauche 1.38 ::get_resource,
1109     ::get_1_resource,
1110     ::get_ind_resource,
1111     ::get_1_ind_resource,
1112     ::r_get_resource
1113 gbeauche 1.16 };
1114     get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
1115 gbeauche 1.1 break;
1116     }
1117 gbeauche 1.7 case NATIVE_MAKE_EXECUTABLE:
1118 gbeauche 1.52 MakeExecutable(0, gpr(4), gpr(5));
1119 gbeauche 1.26 break;
1120     case NATIVE_CHECK_LOAD_INVOC:
1121 gbeauche 1.38 check_load_invoc(gpr(3), gpr(4), gpr(5));
1122 gbeauche 1.2 break;
1123 gbeauche 1.1 default:
1124     printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
1125     QuitEmulator();
1126     break;
1127     }
1128 gbeauche 1.15
1129     #if EMUL_TIME_STATS
1130     native_exec_time += (clock() - native_exec_start);
1131     #endif
1132 gbeauche 1.1 }
1133    
1134     /*
1135     * Execute 68k subroutine (must be ended with EXEC_RETURN)
1136     * This must only be called by the emul_thread when in EMUL_OP mode
1137     * r->a[7] is unused, the routine runs on the caller's stack
1138     */
1139    
1140     void Execute68k(uint32 pc, M68kRegisters *r)
1141     {
1142 gbeauche 1.41 ppc_cpu->execute_68k(pc, r);
1143 gbeauche 1.1 }
1144    
1145     /*
1146     * Execute 68k A-Trap from EMUL_OP routine
1147     * r->a[7] is unused, the routine runs on the caller's stack
1148     */
1149    
1150     void Execute68kTrap(uint16 trap, M68kRegisters *r)
1151     {
1152 gbeauche 1.21 SheepVar proc_var(4);
1153     uint32 proc = proc_var.addr();
1154     WriteMacInt16(proc, trap);
1155     WriteMacInt16(proc + 2, M68K_RTS);
1156     Execute68k(proc, r);
1157 gbeauche 1.1 }
1158    
1159     /*
1160     * Call MacOS PPC code
1161     */
1162    
1163     uint32 call_macos(uint32 tvect)
1164     {
1165 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, 0, NULL);
1166 gbeauche 1.1 }
1167    
1168     uint32 call_macos1(uint32 tvect, uint32 arg1)
1169     {
1170     const uint32 args[] = { arg1 };
1171 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1172 gbeauche 1.1 }
1173    
1174     uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1175     {
1176     const uint32 args[] = { arg1, arg2 };
1177 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1178 gbeauche 1.1 }
1179    
1180     uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1181     {
1182     const uint32 args[] = { arg1, arg2, arg3 };
1183 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1184 gbeauche 1.1 }
1185    
1186     uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1187     {
1188     const uint32 args[] = { arg1, arg2, arg3, arg4 };
1189 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1190 gbeauche 1.1 }
1191    
1192     uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1193     {
1194     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1195 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1196 gbeauche 1.1 }
1197    
1198     uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1199     {
1200     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1201 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1202 gbeauche 1.1 }
1203    
1204     uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1205     {
1206     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1207 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1208 gbeauche 1.1 }
1209    
1210     /*
1211     * Resource Manager thunks
1212     */
1213    
1214     void get_resource(void)
1215     {
1216 gbeauche 1.41 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1217 gbeauche 1.1 }
1218    
1219     void get_1_resource(void)
1220     {
1221 gbeauche 1.41 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1222 gbeauche 1.1 }
1223    
1224     void get_ind_resource(void)
1225     {
1226 gbeauche 1.41 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1227 gbeauche 1.1 }
1228    
1229     void get_1_ind_resource(void)
1230     {
1231 gbeauche 1.41 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1232 gbeauche 1.1 }
1233    
1234     void r_get_resource(void)
1235     {
1236 gbeauche 1.41 ppc_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1237 gbeauche 1.1 }