ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.70
Committed: 2006-05-14T07:21:10Z (18 years ago) by gbeauche
Branch: MAIN
Changes since 1.69: +28 -1 lines
Log Message:
Optimize generated code to NQD & CheckLoad functions. They don't call into
68k or MacOS code, so they don't need to be a termination point. i.e. don't
split into two basic blocks and thus avoid a full hash search.

Also add missing NQD_unknown_hook NativeOp from previous commit.

File Contents

# User Rev Content
1 gbeauche 1.1 /*
2     * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3     *
4 gbeauche 1.57 * SheepShaver (C) 1997-2005 Christian Bauer and Marc Hellwig
5 gbeauche 1.1 *
6     * This program is free software; you can redistribute it and/or modify
7     * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation; either version 2 of the License, or
9     * (at your option) any later version.
10     *
11     * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15     *
16     * You should have received a copy of the GNU General Public License
17     * along with this program; if not, write to the Free Software
18     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19     */
20    
21     #include "sysdeps.h"
22     #include "cpu_emulation.h"
23     #include "main.h"
24 gbeauche 1.3 #include "prefs.h"
25 gbeauche 1.1 #include "xlowmem.h"
26     #include "emul_op.h"
27     #include "rom_patches.h"
28     #include "macos_util.h"
29     #include "block-alloc.hpp"
30     #include "sigsegv.h"
31     #include "cpu/ppc/ppc-cpu.hpp"
32     #include "cpu/ppc/ppc-operations.hpp"
33 gbeauche 1.18 #include "cpu/ppc/ppc-instructions.hpp"
34 gbeauche 1.21 #include "thunks.h"
35 gbeauche 1.1
36     // Used for NativeOp trampolines
37     #include "video.h"
38     #include "name_registry.h"
39     #include "serial.h"
40 gbeauche 1.16 #include "ether.h"
41 gbeauche 1.37 #include "timer.h"
42 gbeauche 1.1
43     #include <stdio.h>
44 gbeauche 1.31 #include <stdlib.h>
45 gbeauche 1.53 #ifdef HAVE_MALLOC_H
46     #include <malloc.h>
47     #endif
48 gbeauche 1.1
49 gbeauche 1.47 #ifdef USE_SDL_VIDEO
50     #include <SDL_events.h>
51     #endif
52    
53 gbeauche 1.1 #if ENABLE_MON
54     #include "mon.h"
55     #include "mon_disass.h"
56     #endif
57    
58 gbeauche 1.10 #define DEBUG 0
59 gbeauche 1.1 #include "debug.h"
60    
61 gbeauche 1.15 // Emulation time statistics
62 gbeauche 1.44 #ifndef EMUL_TIME_STATS
63     #define EMUL_TIME_STATS 0
64     #endif
65 gbeauche 1.15
66     #if EMUL_TIME_STATS
67     static clock_t emul_start_time;
68 gbeauche 1.44 static uint32 interrupt_count = 0, ppc_interrupt_count = 0;
69 gbeauche 1.15 static clock_t interrupt_time = 0;
70     static uint32 exec68k_count = 0;
71     static clock_t exec68k_time = 0;
72     static uint32 native_exec_count = 0;
73     static clock_t native_exec_time = 0;
74     static uint32 macos_exec_count = 0;
75     static clock_t macos_exec_time = 0;
76     #endif
77    
78 gbeauche 1.1 static void enter_mon(void)
79     {
80     // Start up mon in real-mode
81     #if ENABLE_MON
82     char *arg[4] = {"mon", "-m", "-r", NULL};
83     mon(3, arg);
84     #endif
85     }
86    
87 gbeauche 1.23 // From main_*.cpp
88     extern uintptr SignalStackBase();
89    
90 gbeauche 1.26 // From rsrc_patches.cpp
91     extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
92 gbeauche 1.68 extern "C" void named_check_load_invoc(uint32 type, uint32 name, uint32 h);
93 gbeauche 1.26
94 gbeauche 1.21 // PowerPC EmulOp to exit from emulation looop
95     const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
96    
97 gbeauche 1.1 // Enable Execute68k() safety checks?
98     #define SAFE_EXEC_68K 1
99    
100     // Save FP state in Execute68k()?
101     #define SAVE_FP_EXEC_68K 1
102    
103     // Interrupts in EMUL_OP mode?
104     #define INTERRUPTS_IN_EMUL_OP_MODE 1
105    
106     // Interrupts in native mode?
107     #define INTERRUPTS_IN_NATIVE_MODE 1
108    
109     // Pointer to Kernel Data
110 gbeauche 1.52 static KernelData * kernel_data;
111 gbeauche 1.1
112 gbeauche 1.17 // SIGSEGV handler
113 gbeauche 1.48 sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
114 gbeauche 1.17
115 gbeauche 1.38 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
116     // Special trampolines for EmulOp and NativeOp
117     static uint8 *emul_op_trampoline;
118     static uint8 *native_op_trampoline;
119     #endif
120    
121 gbeauche 1.20 // JIT Compiler enabled?
122     static inline bool enable_jit_p()
123     {
124     return PrefsFindBool("jit");
125     }
126    
127 gbeauche 1.1
128     /**
129     * PowerPC emulator glue with special 'sheep' opcodes
130     **/
131    
132 gbeauche 1.18 enum {
133     PPC_I(SHEEP) = PPC_I(MAX),
134     PPC_I(SHEEP_MAX)
135     };
136    
137 gbeauche 1.1 class sheepshaver_cpu
138     : public powerpc_cpu
139     {
140     void init_decoder();
141     void execute_sheep(uint32 opcode);
142    
143     public:
144    
145 gbeauche 1.10 // Constructor
146     sheepshaver_cpu();
147 gbeauche 1.1
148 gbeauche 1.24 // CR & XER accessors
149 gbeauche 1.1 uint32 get_cr() const { return cr().get(); }
150     void set_cr(uint32 v) { cr().set(v); }
151 gbeauche 1.24 uint32 get_xer() const { return xer().get(); }
152     void set_xer(uint32 v) { xer().set(v); }
153 gbeauche 1.1
154 gbeauche 1.38 // Execute NATIVE_OP routine
155     void execute_native_op(uint32 native_op);
156    
157 gbeauche 1.26 // Execute EMUL_OP routine
158     void execute_emul_op(uint32 emul_op);
159    
160 gbeauche 1.1 // Execute 68k routine
161     void execute_68k(uint32 entry, M68kRegisters *r);
162    
163 gbeauche 1.2 // Execute ppc routine
164     void execute_ppc(uint32 entry);
165    
166 gbeauche 1.1 // Execute MacOS/PPC code
167     uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
168    
169 gbeauche 1.53 #if PPC_ENABLE_JIT
170 gbeauche 1.26 // Compile one instruction
171 gbeauche 1.38 virtual int compile1(codegen_context_t & cg_context);
172 gbeauche 1.53 #endif
173 gbeauche 1.1 // Resource manager thunk
174     void get_resource(uint32 old_get_resource);
175    
176     // Handle MacOS interrupt
177 gbeauche 1.4 void interrupt(uint32 entry);
178 gbeauche 1.2
179 gbeauche 1.17 // Make sure the SIGSEGV handler can access CPU registers
180     friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
181 gbeauche 1.1 };
182    
183 gbeauche 1.10 sheepshaver_cpu::sheepshaver_cpu()
184 gbeauche 1.20 : powerpc_cpu(enable_jit_p())
185 gbeauche 1.10 {
186     init_decoder();
187     }
188    
189 gbeauche 1.1 void sheepshaver_cpu::init_decoder()
190     {
191     static const instr_info_t sheep_ii_table[] = {
192     { "sheep",
193 gbeauche 1.13 (execute_pmf)&sheepshaver_cpu::execute_sheep,
194 gbeauche 1.1 NULL,
195 gbeauche 1.18 PPC_I(SHEEP),
196 gbeauche 1.7 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
197 gbeauche 1.1 }
198     };
199    
200     const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
201     D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
202    
203     for (int i = 0; i < ii_count; i++) {
204     const instr_info_t * ii = &sheep_ii_table[i];
205     init_decoder_entry(ii);
206     }
207     }
208    
209 gbeauche 1.2 /* NativeOp instruction format:
210 gbeauche 1.35 +------------+-------------------------+--+-----------+------------+
211     | 6 | |FN| OP | 2 |
212     +------------+-------------------------+--+-----------+------------+
213     0 5 |6 18 19 20 25 26 31
214 gbeauche 1.2 */
215    
216 gbeauche 1.35 typedef bit_field< 19, 19 > FN_field;
217     typedef bit_field< 20, 25 > NATIVE_OP_field;
218 gbeauche 1.2 typedef bit_field< 26, 31 > EMUL_OP_field;
219    
220 gbeauche 1.26 // Execute EMUL_OP routine
221     void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
222     {
223     M68kRegisters r68;
224     WriteMacInt32(XLM_68K_R25, gpr(25));
225     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
226     for (int i = 0; i < 8; i++)
227     r68.d[i] = gpr(8 + i);
228     for (int i = 0; i < 7; i++)
229     r68.a[i] = gpr(16 + i);
230     r68.a[7] = gpr(1);
231 gbeauche 1.62 uint32 saved_cr = get_cr() & 0xff9fffff; // mask_operand::compute(11, 8)
232 gbeauche 1.26 uint32 saved_xer = get_xer();
233     EmulOp(&r68, gpr(24), emul_op);
234     set_cr(saved_cr);
235     set_xer(saved_xer);
236     for (int i = 0; i < 8; i++)
237     gpr(8 + i) = r68.d[i];
238     for (int i = 0; i < 7; i++)
239     gpr(16 + i) = r68.a[i];
240     gpr(1) = r68.a[7];
241     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
242     }
243    
244 gbeauche 1.1 // Execute SheepShaver instruction
245     void sheepshaver_cpu::execute_sheep(uint32 opcode)
246     {
247     // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
248     assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
249    
250     switch (opcode & 0x3f) {
251     case 0: // EMUL_RETURN
252     QuitEmulator();
253     break;
254 gbeauche 1.8
255 gbeauche 1.1 case 1: // EXEC_RETURN
256 gbeauche 1.12 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
257 gbeauche 1.1 break;
258    
259     case 2: // EXEC_NATIVE
260 gbeauche 1.38 execute_native_op(NATIVE_OP_field::extract(opcode));
261 gbeauche 1.2 if (FN_field::test(opcode))
262     pc() = lr();
263     else
264     pc() += 4;
265 gbeauche 1.1 break;
266    
267 gbeauche 1.26 default: // EMUL_OP
268     execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
269     pc() += 4;
270     break;
271     }
272     }
273    
274     // Compile one instruction
275 gbeauche 1.53 #if PPC_ENABLE_JIT
276 gbeauche 1.38 int sheepshaver_cpu::compile1(codegen_context_t & cg_context)
277 gbeauche 1.26 {
278     const instr_info_t *ii = cg_context.instr_info;
279     if (ii->mnemo != PPC_I(SHEEP))
280 gbeauche 1.38 return COMPILE_FAILURE;
281 gbeauche 1.26
282 gbeauche 1.38 int status = COMPILE_FAILURE;
283 gbeauche 1.26 powerpc_dyngen & dg = cg_context.codegen;
284     uint32 opcode = cg_context.opcode;
285    
286     switch (opcode & 0x3f) {
287     case 0: // EMUL_RETURN
288     dg.gen_invoke(QuitEmulator);
289 gbeauche 1.38 status = COMPILE_CODE_OK;
290 gbeauche 1.26 break;
291    
292     case 1: // EXEC_RETURN
293     dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
294 gbeauche 1.38 // Don't check for pending interrupts, we do know we have to
295     // get out of this block ASAP
296     dg.gen_exec_return();
297     status = COMPILE_EPILOGUE_OK;
298 gbeauche 1.26 break;
299    
300     case 2: { // EXEC_NATIVE
301     uint32 selector = NATIVE_OP_field::extract(opcode);
302     switch (selector) {
303 gbeauche 1.38 #if !PPC_REENTRANT_JIT
304     // Filter out functions that may invoke Execute68k() or
305     // CallMacOS(), this would break reentrancy as they could
306     // invalidate the translation cache and even overwrite
307     // continuation code when we are done with them.
308 gbeauche 1.26 case NATIVE_PATCH_NAME_REGISTRY:
309     dg.gen_invoke(DoPatchNameRegistry);
310 gbeauche 1.38 status = COMPILE_CODE_OK;
311 gbeauche 1.26 break;
312     case NATIVE_VIDEO_INSTALL_ACCEL:
313     dg.gen_invoke(VideoInstallAccel);
314 gbeauche 1.38 status = COMPILE_CODE_OK;
315 gbeauche 1.26 break;
316     case NATIVE_VIDEO_VBL:
317     dg.gen_invoke(VideoVBL);
318 gbeauche 1.38 status = COMPILE_CODE_OK;
319 gbeauche 1.26 break;
320     case NATIVE_GET_RESOURCE:
321     case NATIVE_GET_1_RESOURCE:
322     case NATIVE_GET_IND_RESOURCE:
323     case NATIVE_GET_1_IND_RESOURCE:
324     case NATIVE_R_GET_RESOURCE: {
325     static const uint32 get_resource_ptr[] = {
326     XLM_GET_RESOURCE,
327     XLM_GET_1_RESOURCE,
328     XLM_GET_IND_RESOURCE,
329     XLM_GET_1_IND_RESOURCE,
330     XLM_R_GET_RESOURCE
331     };
332     uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
333     typedef void (*func_t)(dyngen_cpu_base, uint32);
334     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
335     dg.gen_invoke_CPU_im(func, old_get_resource);
336 gbeauche 1.38 status = COMPILE_CODE_OK;
337 gbeauche 1.26 break;
338     }
339 gbeauche 1.70 #endif
340 gbeauche 1.26 case NATIVE_CHECK_LOAD_INVOC:
341     dg.gen_load_T0_GPR(3);
342     dg.gen_load_T1_GPR(4);
343     dg.gen_se_16_32_T1();
344     dg.gen_load_T2_GPR(5);
345     dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
346 gbeauche 1.38 status = COMPILE_CODE_OK;
347     break;
348 gbeauche 1.68 case NATIVE_NAMED_CHECK_LOAD_INVOC:
349     dg.gen_load_T0_GPR(3);
350     dg.gen_load_T1_GPR(4);
351     dg.gen_load_T2_GPR(5);
352     dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))named_check_load_invoc);
353     status = COMPILE_CODE_OK;
354     break;
355 gbeauche 1.70 case NATIVE_NQD_SYNC_HOOK:
356     dg.gen_load_T0_GPR(3);
357     dg.gen_invoke_T0_ret_T0((uint32 (*)(uint32))NQD_sync_hook);
358     dg.gen_store_T0_GPR(3);
359     status = COMPILE_CODE_OK;
360     break;
361     case NATIVE_NQD_BITBLT_HOOK:
362     dg.gen_load_T0_GPR(3);
363     dg.gen_invoke_T0_ret_T0((uint32 (*)(uint32))NQD_bitblt_hook);
364     dg.gen_store_T0_GPR(3);
365     status = COMPILE_CODE_OK;
366     break;
367     case NATIVE_NQD_FILLRECT_HOOK:
368     dg.gen_load_T0_GPR(3);
369     dg.gen_invoke_T0_ret_T0((uint32 (*)(uint32))NQD_fillrect_hook);
370     dg.gen_store_T0_GPR(3);
371     status = COMPILE_CODE_OK;
372     break;
373     case NATIVE_NQD_UNKNOWN_HOOK:
374     dg.gen_load_T0_GPR(3);
375     dg.gen_invoke_T0_ret_T0((uint32 (*)(uint32))NQD_unknown_hook);
376     dg.gen_store_T0_GPR(3);
377     status = COMPILE_CODE_OK;
378     break;
379 gbeauche 1.69 case NATIVE_NQD_BITBLT:
380 gbeauche 1.35 dg.gen_load_T0_GPR(3);
381     dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt);
382 gbeauche 1.38 status = COMPILE_CODE_OK;
383 gbeauche 1.35 break;
384 gbeauche 1.69 case NATIVE_NQD_INVRECT:
385 gbeauche 1.35 dg.gen_load_T0_GPR(3);
386     dg.gen_invoke_T0((void (*)(uint32))NQD_invrect);
387 gbeauche 1.38 status = COMPILE_CODE_OK;
388 gbeauche 1.35 break;
389 gbeauche 1.69 case NATIVE_NQD_FILLRECT:
390 gbeauche 1.35 dg.gen_load_T0_GPR(3);
391     dg.gen_invoke_T0((void (*)(uint32))NQD_fillrect);
392 gbeauche 1.38 status = COMPILE_CODE_OK;
393 gbeauche 1.26 break;
394     }
395 gbeauche 1.38 // Could we fully translate this NativeOp?
396 gbeauche 1.42 if (status == COMPILE_CODE_OK) {
397     if (!FN_field::test(opcode))
398     cg_context.done_compile = false;
399     else {
400 gbeauche 1.26 dg.gen_load_A0_LR();
401     dg.gen_set_PC_A0();
402 gbeauche 1.42 cg_context.done_compile = true;
403 gbeauche 1.26 }
404 gbeauche 1.38 break;
405     }
406     #if PPC_REENTRANT_JIT
407     // Try to execute NativeOp trampoline
408 gbeauche 1.42 if (!FN_field::test(opcode))
409     dg.gen_set_PC_im(cg_context.pc + 4);
410     else {
411     dg.gen_load_A0_LR();
412     dg.gen_set_PC_A0();
413     }
414 gbeauche 1.38 dg.gen_mov_32_T0_im(selector);
415     dg.gen_jmp(native_op_trampoline);
416     cg_context.done_compile = true;
417     status = COMPILE_EPILOGUE_OK;
418     break;
419     #endif
420     // Invoke NativeOp handler
421 gbeauche 1.42 if (!FN_field::test(opcode)) {
422     typedef void (*func_t)(dyngen_cpu_base, uint32);
423     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
424     dg.gen_invoke_CPU_im(func, selector);
425     cg_context.done_compile = false;
426     status = COMPILE_CODE_OK;
427     }
428     // Otherwise, let it generate a call to execute_sheep() which
429     // will cause necessary updates to the program counter
430 gbeauche 1.26 break;
431     }
432    
433 gbeauche 1.1 default: { // EMUL_OP
434 gbeauche 1.37 uint32 emul_op = EMUL_OP_field::extract(opcode) - 3;
435 gbeauche 1.38 #if PPC_REENTRANT_JIT
436     // Try to execute EmulOp trampoline
437     dg.gen_set_PC_im(cg_context.pc + 4);
438     dg.gen_mov_32_T0_im(emul_op);
439     dg.gen_jmp(emul_op_trampoline);
440     cg_context.done_compile = true;
441     status = COMPILE_EPILOGUE_OK;
442     break;
443     #endif
444     // Invoke EmulOp handler
445 gbeauche 1.26 typedef void (*func_t)(dyngen_cpu_base, uint32);
446     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
447 gbeauche 1.37 dg.gen_invoke_CPU_im(func, emul_op);
448 gbeauche 1.26 cg_context.done_compile = false;
449 gbeauche 1.38 status = COMPILE_CODE_OK;
450 gbeauche 1.1 break;
451     }
452     }
453 gbeauche 1.38 return status;
454 gbeauche 1.53 }
455 gbeauche 1.26 #endif
456 gbeauche 1.1
457     // Handle MacOS interrupt
458 gbeauche 1.4 void sheepshaver_cpu::interrupt(uint32 entry)
459 gbeauche 1.1 {
460 gbeauche 1.15 #if EMUL_TIME_STATS
461 gbeauche 1.44 ppc_interrupt_count++;
462 gbeauche 1.15 const clock_t interrupt_start = clock();
463     #endif
464    
465 gbeauche 1.2 // Save program counters and branch registers
466     uint32 saved_pc = pc();
467     uint32 saved_lr = lr();
468     uint32 saved_ctr= ctr();
469 gbeauche 1.4 uint32 saved_sp = gpr(1);
470 gbeauche 1.2
471 gbeauche 1.4 // Initialize stack pointer to SheepShaver alternate stack base
472 gbeauche 1.23 gpr(1) = SignalStackBase() - 64;
473 gbeauche 1.1
474     // Build trampoline to return from interrupt
475 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
476 gbeauche 1.1
477     // Prepare registers for nanokernel interrupt routine
478 gbeauche 1.5 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
479     kernel_data->v[0x018 >> 2] = htonl(gpr(6));
480 gbeauche 1.1
481 gbeauche 1.5 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
482 gbeauche 1.2 assert(gpr(6) != 0);
483 gbeauche 1.1 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
484     WriteMacInt32(gpr(6) + 0x144, gpr(8));
485     WriteMacInt32(gpr(6) + 0x14c, gpr(9));
486     WriteMacInt32(gpr(6) + 0x154, gpr(10));
487     WriteMacInt32(gpr(6) + 0x15c, gpr(11));
488     WriteMacInt32(gpr(6) + 0x164, gpr(12));
489     WriteMacInt32(gpr(6) + 0x16c, gpr(13));
490    
491     gpr(1) = KernelDataAddr;
492 gbeauche 1.5 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
493 gbeauche 1.1 gpr(8) = 0;
494 gbeauche 1.21 gpr(10) = trampoline.addr();
495     gpr(12) = trampoline.addr();
496 gbeauche 1.8 gpr(13) = get_cr();
497 gbeauche 1.1
498     // rlwimi. r7,r7,8,0,0
499     uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
500     record_cr0(result);
501     gpr(7) = result;
502    
503     gpr(11) = 0xf072; // MSR (SRR1)
504 gbeauche 1.8 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
505 gbeauche 1.1
506     // Enter nanokernel
507     execute(entry);
508    
509 gbeauche 1.2 // Restore program counters and branch registers
510     pc() = saved_pc;
511     lr() = saved_lr;
512     ctr()= saved_ctr;
513 gbeauche 1.4 gpr(1) = saved_sp;
514 gbeauche 1.15
515     #if EMUL_TIME_STATS
516     interrupt_time += (clock() - interrupt_start);
517     #endif
518 gbeauche 1.1 }
519    
520     // Execute 68k routine
521     void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
522     {
523 gbeauche 1.15 #if EMUL_TIME_STATS
524     exec68k_count++;
525     const clock_t exec68k_start = clock();
526     #endif
527    
528 gbeauche 1.1 #if SAFE_EXEC_68K
529     if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
530     printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
531     #endif
532    
533     // Save program counters and branch registers
534     uint32 saved_pc = pc();
535     uint32 saved_lr = lr();
536     uint32 saved_ctr= ctr();
537 gbeauche 1.8 uint32 saved_cr = get_cr();
538 gbeauche 1.1
539     // Create MacOS stack frame
540 gbeauche 1.6 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
541 gbeauche 1.1 uint32 sp = gpr(1);
542 gbeauche 1.6 gpr(1) -= 56;
543 gbeauche 1.1 WriteMacInt32(gpr(1), sp);
544    
545     // Save PowerPC registers
546 gbeauche 1.6 uint32 saved_GPRs[19];
547     memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
548 gbeauche 1.1 #if SAVE_FP_EXEC_68K
549 gbeauche 1.6 double saved_FPRs[18];
550     memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
551 gbeauche 1.1 #endif
552    
553     // Setup registers for 68k emulator
554 gbeauche 1.2 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
555 gbeauche 1.1 for (int i = 0; i < 8; i++) // d[0]..d[7]
556     gpr(8 + i) = r->d[i];
557     for (int i = 0; i < 7; i++) // a[0]..a[6]
558     gpr(16 + i) = r->a[i];
559     gpr(23) = 0;
560     gpr(24) = entry;
561     gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
562     gpr(26) = 0;
563     gpr(28) = 0; // VBR
564 gbeauche 1.5 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
565     gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
566 gbeauche 1.1 gpr(31) = KernelDataAddr + 0x1000;
567    
568     // Push return address (points to EXEC_RETURN opcode) on stack
569     gpr(1) -= 4;
570     WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
571    
572     // Rentering 68k emulator
573     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
574    
575     // Set r0 to 0 for 68k emulator
576     gpr(0) = 0;
577    
578     // Execute 68k opcode
579     uint32 opcode = ReadMacInt16(gpr(24));
580     gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
581     gpr(29) += opcode * 8;
582     execute(gpr(29));
583    
584     // Save r25 (contains current 68k interrupt level)
585     WriteMacInt32(XLM_68K_R25, gpr(25));
586    
587     // Reentering EMUL_OP mode
588     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
589    
590     // Save 68k registers
591     for (int i = 0; i < 8; i++) // d[0]..d[7]
592     r->d[i] = gpr(8 + i);
593     for (int i = 0; i < 7; i++) // a[0]..a[6]
594     r->a[i] = gpr(16 + i);
595    
596     // Restore PowerPC registers
597 gbeauche 1.6 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
598 gbeauche 1.1 #if SAVE_FP_EXEC_68K
599 gbeauche 1.6 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
600 gbeauche 1.1 #endif
601    
602     // Cleanup stack
603 gbeauche 1.6 gpr(1) += 56;
604 gbeauche 1.1
605     // Restore program counters and branch registers
606     pc() = saved_pc;
607     lr() = saved_lr;
608     ctr()= saved_ctr;
609 gbeauche 1.8 set_cr(saved_cr);
610 gbeauche 1.15
611     #if EMUL_TIME_STATS
612     exec68k_time += (clock() - exec68k_start);
613     #endif
614 gbeauche 1.1 }
615    
616     // Call MacOS PPC code
617     uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
618     {
619 gbeauche 1.15 #if EMUL_TIME_STATS
620     macos_exec_count++;
621     const clock_t macos_exec_start = clock();
622     #endif
623    
624 gbeauche 1.1 // Save program counters and branch registers
625     uint32 saved_pc = pc();
626     uint32 saved_lr = lr();
627     uint32 saved_ctr= ctr();
628    
629     // Build trampoline with EXEC_RETURN
630 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
631     lr() = trampoline.addr();
632 gbeauche 1.1
633     gpr(1) -= 64; // Create stack frame
634     uint32 proc = ReadMacInt32(tvect); // Get routine address
635     uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
636    
637     // Save PowerPC registers
638     uint32 regs[8];
639     regs[0] = gpr(2);
640     for (int i = 0; i < nargs; i++)
641     regs[i + 1] = gpr(i + 3);
642    
643     // Prepare and call MacOS routine
644     gpr(2) = toc;
645     for (int i = 0; i < nargs; i++)
646     gpr(i + 3) = args[i];
647     execute(proc);
648     uint32 retval = gpr(3);
649    
650     // Restore PowerPC registers
651     for (int i = 0; i <= nargs; i++)
652     gpr(i + 2) = regs[i];
653    
654     // Cleanup stack
655     gpr(1) += 64;
656    
657     // Restore program counters and branch registers
658     pc() = saved_pc;
659     lr() = saved_lr;
660     ctr()= saved_ctr;
661    
662 gbeauche 1.15 #if EMUL_TIME_STATS
663     macos_exec_time += (clock() - macos_exec_start);
664     #endif
665    
666 gbeauche 1.1 return retval;
667     }
668    
669 gbeauche 1.2 // Execute ppc routine
670     inline void sheepshaver_cpu::execute_ppc(uint32 entry)
671     {
672     // Save branch registers
673     uint32 saved_lr = lr();
674    
675 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
676     WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
677     lr() = trampoline.addr();
678 gbeauche 1.2
679     execute(entry);
680    
681     // Restore branch registers
682     lr() = saved_lr;
683     }
684    
685 gbeauche 1.1 // Resource Manager thunk
686     inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
687     {
688 gbeauche 1.2 uint32 type = gpr(3);
689     int16 id = gpr(4);
690    
691     // Create stack frame
692     gpr(1) -= 56;
693    
694     // Call old routine
695     execute_ppc(old_get_resource);
696    
697     // Call CheckLoad()
698 gbeauche 1.5 uint32 handle = gpr(3);
699 gbeauche 1.2 check_load_invoc(type, id, handle);
700 gbeauche 1.5 gpr(3) = handle;
701 gbeauche 1.2
702     // Cleanup stack
703     gpr(1) += 56;
704 gbeauche 1.1 }
705    
706    
707     /**
708     * SheepShaver CPU engine interface
709     **/
710    
711 gbeauche 1.41 // PowerPC CPU emulator
712     static sheepshaver_cpu *ppc_cpu = NULL;
713 gbeauche 1.1
714 gbeauche 1.7 void FlushCodeCache(uintptr start, uintptr end)
715     {
716     D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
717 gbeauche 1.41 ppc_cpu->invalidate_cache_range(start, end);
718 gbeauche 1.2 }
719    
720 gbeauche 1.1 // Dump PPC registers
721     static void dump_registers(void)
722     {
723 gbeauche 1.41 ppc_cpu->dump_registers();
724 gbeauche 1.1 }
725    
726     // Dump log
727     static void dump_log(void)
728     {
729 gbeauche 1.41 ppc_cpu->dump_log();
730 gbeauche 1.1 }
731    
732     /*
733     * Initialize CPU emulation
734     */
735    
736 gbeauche 1.48 sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
737 gbeauche 1.1 {
738     #if ENABLE_VOSF
739 gbeauche 1.3 // Handle screen fault
740     extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
741     if (Screen_fault_handler(fault_address, fault_instruction))
742     return SIGSEGV_RETURN_SUCCESS;
743 gbeauche 1.1 #endif
744 gbeauche 1.3
745     const uintptr addr = (uintptr)fault_address;
746     #if HAVE_SIGSEGV_SKIP_INSTRUCTION
747     // Ignore writes to ROM
748 gbeauche 1.52 if ((addr - (uintptr)ROMBaseHost) < ROM_SIZE)
749 gbeauche 1.3 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
750    
751 gbeauche 1.17 // Get program counter of target CPU
752 gbeauche 1.41 sheepshaver_cpu * const cpu = ppc_cpu;
753 gbeauche 1.17 const uint32 pc = cpu->pc();
754    
755     // Fault in Mac ROM or RAM?
756 gbeauche 1.43 bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize)) || (pc >= DR_CACHE_BASE && pc < (DR_CACHE_BASE + DR_CACHE_SIZE));
757 gbeauche 1.17 if (mac_fault) {
758    
759     // "VM settings" during MacOS 8 installation
760     if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
761     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
762    
763     // MacOS 8.5 installation
764     else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
765     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
766    
767     // MacOS 8 serial drivers on startup
768     else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
769     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
770    
771     // MacOS 8.1 serial drivers on startup
772     else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
773     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
774     else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
775     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
776 gbeauche 1.43
777     // MacOS 8.6 serial drivers on startup (with DR Cache and OldWorld ROM)
778     else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(16) == 0xf3012002 || cpu->gpr(16) == 0xf3012000))
779     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
780     else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
781     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
782 gbeauche 1.17
783 gbeauche 1.30 // Ignore writes to the zero page
784     else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
785     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
786    
787 gbeauche 1.17 // Ignore all other faults, if requested
788     if (PrefsFindBool("ignoresegv"))
789     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
790     }
791 gbeauche 1.3 #else
792     #error "FIXME: You don't have the capability to skip instruction within signal handlers"
793 gbeauche 1.1 #endif
794 gbeauche 1.3
795 gbeauche 1.60 fprintf(stderr, "SIGSEGV\n");
796     fprintf(stderr, " pc %p\n", fault_instruction);
797     fprintf(stderr, " ea %p\n", fault_address);
798 gbeauche 1.1 dump_registers();
799 gbeauche 1.41 ppc_cpu->dump_log();
800 gbeauche 1.1 enter_mon();
801     QuitEmulator();
802 gbeauche 1.3
803     return SIGSEGV_RETURN_FAILURE;
804 gbeauche 1.1 }
805    
806     void init_emul_ppc(void)
807     {
808 gbeauche 1.52 // Get pointer to KernelData in host address space
809     kernel_data = (KernelData *)Mac2HostAddr(KERNEL_DATA_BASE);
810    
811 gbeauche 1.1 // Initialize main CPU emulator
812 gbeauche 1.41 ppc_cpu = new sheepshaver_cpu();
813     ppc_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
814     ppc_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
815 gbeauche 1.1 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
816    
817     #if ENABLE_MON
818     // Install "regs" command in cxmon
819     mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
820     mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
821     #endif
822 gbeauche 1.15
823     #if EMUL_TIME_STATS
824     emul_start_time = clock();
825     #endif
826 gbeauche 1.1 }
827    
828     /*
829 gbeauche 1.14 * Deinitialize emulation
830     */
831    
832     void exit_emul_ppc(void)
833     {
834 gbeauche 1.15 #if EMUL_TIME_STATS
835     clock_t emul_end_time = clock();
836    
837     printf("### Statistics for SheepShaver emulation parts\n");
838     const clock_t emul_time = emul_end_time - emul_start_time;
839     printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
840     printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
841     (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
842 gbeauche 1.44 printf("Total ppc interrupt count: %d (%2.1f %%)\n", ppc_interrupt_count,
843     (double(ppc_interrupt_count) * 100.0) / double(interrupt_count));
844 gbeauche 1.15
845     #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
846     printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
847     printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
848     double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
849     100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
850     } while (0)
851    
852     PRINT_STATS("Execute68k[Trap] execution", exec68k);
853     PRINT_STATS("NativeOp execution", native_exec);
854     PRINT_STATS("MacOS routine execution", macos_exec);
855    
856     #undef PRINT_STATS
857     printf("\n");
858     #endif
859    
860 gbeauche 1.41 delete ppc_cpu;
861 gbeauche 1.67 ppc_cpu = NULL;
862 gbeauche 1.14 }
863    
864 gbeauche 1.38 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
865     // Initialize EmulOp trampolines
866     void init_emul_op_trampolines(basic_dyngen & dg)
867     {
868     typedef void (*func_t)(dyngen_cpu_base, uint32);
869     func_t func;
870    
871     // EmulOp
872     emul_op_trampoline = dg.gen_start();
873     func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
874     dg.gen_invoke_CPU_T0(func);
875     dg.gen_exec_return();
876     dg.gen_end();
877    
878     // NativeOp
879     native_op_trampoline = dg.gen_start();
880     func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
881     dg.gen_invoke_CPU_T0(func);
882     dg.gen_exec_return();
883     dg.gen_end();
884    
885     D(bug("EmulOp trampoline: %p\n", emul_op_trampoline));
886     D(bug("NativeOp trampoline: %p\n", native_op_trampoline));
887     }
888     #endif
889    
890 gbeauche 1.14 /*
891 gbeauche 1.1 * Emulation loop
892     */
893    
894     void emul_ppc(uint32 entry)
895     {
896 gbeauche 1.24 #if 0
897 gbeauche 1.41 ppc_cpu->start_log();
898 gbeauche 1.10 #endif
899     // start emulation loop and enable code translation or caching
900 gbeauche 1.41 ppc_cpu->execute(entry);
901 gbeauche 1.1 }
902    
903     /*
904     * Handle PowerPC interrupt
905     */
906    
907 gbeauche 1.2 void TriggerInterrupt(void)
908     {
909 gbeauche 1.64 idle_resume();
910 gbeauche 1.2 #if 0
911     WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
912     #else
913 gbeauche 1.10 // Trigger interrupt to main cpu only
914 gbeauche 1.41 if (ppc_cpu)
915     ppc_cpu->trigger_interrupt();
916 gbeauche 1.2 #endif
917     }
918    
919 gbeauche 1.58 void HandleInterrupt(powerpc_registers *r)
920 gbeauche 1.1 {
921 gbeauche 1.47 #ifdef USE_SDL_VIDEO
922     // We must fill in the events queue in the same thread that did call SDL_SetVideoMode()
923     SDL_PumpEvents();
924     #endif
925    
926 gbeauche 1.1 // Do nothing if interrupts are disabled
927 gbeauche 1.46 if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0)
928 gbeauche 1.1 return;
929    
930 gbeauche 1.63 // Update interrupt count
931 gbeauche 1.44 #if EMUL_TIME_STATS
932     interrupt_count++;
933     #endif
934 gbeauche 1.40
935 gbeauche 1.1 // Interrupt action depends on current run mode
936     switch (ReadMacInt32(XLM_RUN_MODE)) {
937     case MODE_68K:
938     // 68k emulator active, trigger 68k interrupt level 1
939     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
940 gbeauche 1.58 r->cr.set(r->cr.get() | tswap32(kernel_data->v[0x674 >> 2]));
941 gbeauche 1.1 break;
942    
943     #if INTERRUPTS_IN_NATIVE_MODE
944     case MODE_NATIVE:
945     // 68k emulator inactive, in nanokernel?
946 gbeauche 1.63 if (r->gpr[1] != KernelDataAddr) {
947 gbeauche 1.39
948 gbeauche 1.1 // Prepare for 68k interrupt level 1
949     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
950     WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
951     ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
952     | tswap32(kernel_data->v[0x674 >> 2]));
953    
954     // Execute nanokernel interrupt routine (this will activate the 68k emulator)
955 gbeauche 1.2 DisableInterrupt();
956 gbeauche 1.1 if (ROMType == ROMTYPE_NEWWORLD)
957 gbeauche 1.41 ppc_cpu->interrupt(ROM_BASE + 0x312b1c);
958 gbeauche 1.1 else
959 gbeauche 1.41 ppc_cpu->interrupt(ROM_BASE + 0x312a3c);
960 gbeauche 1.1 }
961     break;
962     #endif
963    
964     #if INTERRUPTS_IN_EMUL_OP_MODE
965     case MODE_EMUL_OP:
966     // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
967     if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
968 gbeauche 1.44 #if EMUL_TIME_STATS
969     const clock_t interrupt_start = clock();
970     #endif
971 gbeauche 1.1 #if 1
972     // Execute full 68k interrupt routine
973     M68kRegisters r;
974     uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
975     WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
976 gbeauche 1.53 static const uint8 proc_template[] = {
977 gbeauche 1.2 0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
978     0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
979     0x40, 0xe7, // move sr,-(sp) (saved SR)
980     0x20, 0x78, 0x00, 0x064, // move.l $64,a0
981     0x4e, 0xd0, // jmp (a0)
982     M68K_RTS >> 8, M68K_RTS & 0xff // @1
983 gbeauche 1.1 };
984 gbeauche 1.53 BUILD_SHEEPSHAVER_PROCEDURE(proc);
985     Execute68k(proc, &r);
986 gbeauche 1.1 WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
987     #else
988     // Only update cursor
989     if (HasMacStarted()) {
990     if (InterruptFlags & INTFLAG_VIA) {
991     ClearInterruptFlag(INTFLAG_VIA);
992     ADBInterrupt();
993 gbeauche 1.22 ExecuteNative(NATIVE_VIDEO_VBL);
994 gbeauche 1.1 }
995     }
996     #endif
997 gbeauche 1.44 #if EMUL_TIME_STATS
998     interrupt_time += (clock() - interrupt_start);
999     #endif
1000 gbeauche 1.1 }
1001     break;
1002     #endif
1003     }
1004     }
1005    
1006 gbeauche 1.38 // Execute NATIVE_OP routine
1007     void sheepshaver_cpu::execute_native_op(uint32 selector)
1008 gbeauche 1.1 {
1009 gbeauche 1.15 #if EMUL_TIME_STATS
1010     native_exec_count++;
1011     const clock_t native_exec_start = clock();
1012     #endif
1013    
1014 gbeauche 1.1 switch (selector) {
1015     case NATIVE_PATCH_NAME_REGISTRY:
1016     DoPatchNameRegistry();
1017     break;
1018     case NATIVE_VIDEO_INSTALL_ACCEL:
1019     VideoInstallAccel();
1020     break;
1021     case NATIVE_VIDEO_VBL:
1022     VideoVBL();
1023     break;
1024     case NATIVE_VIDEO_DO_DRIVER_IO:
1025 gbeauche 1.52 gpr(3) = (int32)(int16)VideoDoDriverIO(gpr(3), gpr(4), gpr(5), gpr(6), gpr(7));
1026 gbeauche 1.1 break;
1027 gbeauche 1.65 case NATIVE_ETHER_AO_GET_HWADDR:
1028     AO_get_ethernet_address(gpr(3));
1029     break;
1030     case NATIVE_ETHER_AO_ADD_MULTI:
1031     AO_enable_multicast(gpr(3));
1032     break;
1033     case NATIVE_ETHER_AO_DEL_MULTI:
1034     AO_disable_multicast(gpr(3));
1035     break;
1036     case NATIVE_ETHER_AO_SEND_PACKET:
1037     AO_transmit_packet(gpr(3));
1038     break;
1039 gbeauche 1.16 case NATIVE_ETHER_IRQ:
1040     EtherIRQ();
1041     break;
1042     case NATIVE_ETHER_INIT:
1043 gbeauche 1.38 gpr(3) = InitStreamModule((void *)gpr(3));
1044 gbeauche 1.16 break;
1045     case NATIVE_ETHER_TERM:
1046     TerminateStreamModule();
1047     break;
1048     case NATIVE_ETHER_OPEN:
1049 gbeauche 1.38 gpr(3) = ether_open((queue_t *)gpr(3), (void *)gpr(4), gpr(5), gpr(6), (void*)gpr(7));
1050 gbeauche 1.1 break;
1051 gbeauche 1.16 case NATIVE_ETHER_CLOSE:
1052 gbeauche 1.38 gpr(3) = ether_close((queue_t *)gpr(3), gpr(4), (void *)gpr(5));
1053 gbeauche 1.1 break;
1054 gbeauche 1.16 case NATIVE_ETHER_WPUT:
1055 gbeauche 1.38 gpr(3) = ether_wput((queue_t *)gpr(3), (mblk_t *)gpr(4));
1056 gbeauche 1.1 break;
1057 gbeauche 1.16 case NATIVE_ETHER_RSRV:
1058 gbeauche 1.38 gpr(3) = ether_rsrv((queue_t *)gpr(3));
1059 gbeauche 1.1 break;
1060 gbeauche 1.69 case NATIVE_NQD_SYNC_HOOK:
1061 gbeauche 1.38 gpr(3) = NQD_sync_hook(gpr(3));
1062 gbeauche 1.32 break;
1063 gbeauche 1.70 case NATIVE_NQD_UNKNOWN_HOOK:
1064     gpr(3) = NQD_unknown_hook(gpr(3));
1065     break;
1066 gbeauche 1.69 case NATIVE_NQD_BITBLT_HOOK:
1067 gbeauche 1.38 gpr(3) = NQD_bitblt_hook(gpr(3));
1068 gbeauche 1.32 break;
1069 gbeauche 1.69 case NATIVE_NQD_BITBLT:
1070 gbeauche 1.38 NQD_bitblt(gpr(3));
1071 gbeauche 1.32 break;
1072 gbeauche 1.69 case NATIVE_NQD_FILLRECT_HOOK:
1073 gbeauche 1.38 gpr(3) = NQD_fillrect_hook(gpr(3));
1074 gbeauche 1.32 break;
1075 gbeauche 1.69 case NATIVE_NQD_INVRECT:
1076 gbeauche 1.38 NQD_invrect(gpr(3));
1077 gbeauche 1.32 break;
1078 gbeauche 1.69 case NATIVE_NQD_FILLRECT:
1079 gbeauche 1.38 NQD_fillrect(gpr(3));
1080 gbeauche 1.32 break;
1081 gbeauche 1.1 case NATIVE_SERIAL_NOTHING:
1082     case NATIVE_SERIAL_OPEN:
1083     case NATIVE_SERIAL_PRIME_IN:
1084     case NATIVE_SERIAL_PRIME_OUT:
1085     case NATIVE_SERIAL_CONTROL:
1086     case NATIVE_SERIAL_STATUS:
1087     case NATIVE_SERIAL_CLOSE: {
1088     typedef int16 (*SerialCallback)(uint32, uint32);
1089     static const SerialCallback serial_callbacks[] = {
1090     SerialNothing,
1091     SerialOpen,
1092     SerialPrimeIn,
1093     SerialPrimeOut,
1094     SerialControl,
1095     SerialStatus,
1096     SerialClose
1097     };
1098 gbeauche 1.38 gpr(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](gpr(3), gpr(4));
1099 gbeauche 1.16 break;
1100     }
1101     case NATIVE_GET_RESOURCE:
1102 gbeauche 1.68 get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1103     break;
1104 gbeauche 1.16 case NATIVE_GET_1_RESOURCE:
1105 gbeauche 1.68 get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1106     break;
1107 gbeauche 1.16 case NATIVE_GET_IND_RESOURCE:
1108 gbeauche 1.68 get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1109     break;
1110 gbeauche 1.16 case NATIVE_GET_1_IND_RESOURCE:
1111 gbeauche 1.68 get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1112     break;
1113     case NATIVE_R_GET_RESOURCE:
1114     get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1115 gbeauche 1.1 break;
1116 gbeauche 1.7 case NATIVE_MAKE_EXECUTABLE:
1117 gbeauche 1.52 MakeExecutable(0, gpr(4), gpr(5));
1118 gbeauche 1.26 break;
1119     case NATIVE_CHECK_LOAD_INVOC:
1120 gbeauche 1.38 check_load_invoc(gpr(3), gpr(4), gpr(5));
1121 gbeauche 1.2 break;
1122 gbeauche 1.68 case NATIVE_NAMED_CHECK_LOAD_INVOC:
1123     named_check_load_invoc(gpr(3), gpr(4), gpr(5));
1124     break;
1125 gbeauche 1.1 default:
1126     printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
1127     QuitEmulator();
1128     break;
1129     }
1130 gbeauche 1.15
1131     #if EMUL_TIME_STATS
1132     native_exec_time += (clock() - native_exec_start);
1133     #endif
1134 gbeauche 1.1 }
1135    
1136     /*
1137     * Execute 68k subroutine (must be ended with EXEC_RETURN)
1138     * This must only be called by the emul_thread when in EMUL_OP mode
1139     * r->a[7] is unused, the routine runs on the caller's stack
1140     */
1141    
1142     void Execute68k(uint32 pc, M68kRegisters *r)
1143     {
1144 gbeauche 1.41 ppc_cpu->execute_68k(pc, r);
1145 gbeauche 1.1 }
1146    
1147     /*
1148     * Execute 68k A-Trap from EMUL_OP routine
1149     * r->a[7] is unused, the routine runs on the caller's stack
1150     */
1151    
1152     void Execute68kTrap(uint16 trap, M68kRegisters *r)
1153     {
1154 gbeauche 1.21 SheepVar proc_var(4);
1155     uint32 proc = proc_var.addr();
1156     WriteMacInt16(proc, trap);
1157     WriteMacInt16(proc + 2, M68K_RTS);
1158     Execute68k(proc, r);
1159 gbeauche 1.1 }
1160    
1161     /*
1162     * Call MacOS PPC code
1163     */
1164    
1165     uint32 call_macos(uint32 tvect)
1166     {
1167 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, 0, NULL);
1168 gbeauche 1.1 }
1169    
1170     uint32 call_macos1(uint32 tvect, uint32 arg1)
1171     {
1172     const uint32 args[] = { arg1 };
1173 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1174 gbeauche 1.1 }
1175    
1176     uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1177     {
1178     const uint32 args[] = { arg1, arg2 };
1179 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1180 gbeauche 1.1 }
1181    
1182     uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1183     {
1184     const uint32 args[] = { arg1, arg2, arg3 };
1185 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1186 gbeauche 1.1 }
1187    
1188     uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1189     {
1190     const uint32 args[] = { arg1, arg2, arg3, arg4 };
1191 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1192 gbeauche 1.1 }
1193    
1194     uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1195     {
1196     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1197 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1198 gbeauche 1.1 }
1199    
1200     uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1201     {
1202     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1203 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1204 gbeauche 1.1 }
1205    
1206     uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1207     {
1208     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1209 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1210 gbeauche 1.1 }