ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.19
Committed: 2003-11-30T17:21:52Z (20 years, 6 months ago) by gbeauche
Branch: MAIN
Changes since 1.18: +1 -10 lines
Log Message:
better handling of static translation cache allocation, handle nested
execution paths from the cpu core, cleanups for KPX_MAX_CPUS == 1.

File Contents

# Content
1 /*
2 * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3 *
4 * SheepShaver (C) 1997-2002 Christian Bauer and Marc Hellwig
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 #include "sysdeps.h"
22 #include "cpu_emulation.h"
23 #include "main.h"
24 #include "prefs.h"
25 #include "xlowmem.h"
26 #include "emul_op.h"
27 #include "rom_patches.h"
28 #include "macos_util.h"
29 #include "block-alloc.hpp"
30 #include "sigsegv.h"
31 #include "cpu/ppc/ppc-cpu.hpp"
32 #include "cpu/ppc/ppc-operations.hpp"
33 #include "cpu/ppc/ppc-instructions.hpp"
34
35 // Used for NativeOp trampolines
36 #include "video.h"
37 #include "name_registry.h"
38 #include "serial.h"
39 #include "ether.h"
40
41 #include <stdio.h>
42
43 #if ENABLE_MON
44 #include "mon.h"
45 #include "mon_disass.h"
46 #endif
47
48 #define DEBUG 0
49 #include "debug.h"
50
51 // Emulation time statistics
52 #define EMUL_TIME_STATS 1
53
54 #if EMUL_TIME_STATS
55 static clock_t emul_start_time;
56 static uint32 interrupt_count = 0;
57 static clock_t interrupt_time = 0;
58 static uint32 exec68k_count = 0;
59 static clock_t exec68k_time = 0;
60 static uint32 native_exec_count = 0;
61 static clock_t native_exec_time = 0;
62 static uint32 macos_exec_count = 0;
63 static clock_t macos_exec_time = 0;
64 #endif
65
66 static void enter_mon(void)
67 {
68 // Start up mon in real-mode
69 #if ENABLE_MON
70 char *arg[4] = {"mon", "-m", "-r", NULL};
71 mon(3, arg);
72 #endif
73 }
74
75 // Enable multicore (main/interrupts) cpu emulation?
76 #define MULTICORE_CPU (ASYNC_IRQ ? 1 : 0)
77
78 // Enable Execute68k() safety checks?
79 #define SAFE_EXEC_68K 1
80
81 // Save FP state in Execute68k()?
82 #define SAVE_FP_EXEC_68K 1
83
84 // Interrupts in EMUL_OP mode?
85 #define INTERRUPTS_IN_EMUL_OP_MODE 1
86
87 // Interrupts in native mode?
88 #define INTERRUPTS_IN_NATIVE_MODE 1
89
90 // Pointer to Kernel Data
91 static KernelData * const kernel_data = (KernelData *)KERNEL_DATA_BASE;
92
93 // SIGSEGV handler
94 static sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
95
96
97 /**
98 * PowerPC emulator glue with special 'sheep' opcodes
99 **/
100
101 enum {
102 PPC_I(SHEEP) = PPC_I(MAX),
103 PPC_I(SHEEP_MAX)
104 };
105
106 class sheepshaver_cpu
107 : public powerpc_cpu
108 {
109 void init_decoder();
110 void execute_sheep(uint32 opcode);
111
112 public:
113
114 // Constructor
115 sheepshaver_cpu();
116
117 // Condition Register accessors
118 uint32 get_cr() const { return cr().get(); }
119 void set_cr(uint32 v) { cr().set(v); }
120
121 // Execute 68k routine
122 void execute_68k(uint32 entry, M68kRegisters *r);
123
124 // Execute ppc routine
125 void execute_ppc(uint32 entry);
126
127 // Execute MacOS/PPC code
128 uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
129
130 // Resource manager thunk
131 void get_resource(uint32 old_get_resource);
132
133 // Handle MacOS interrupt
134 void interrupt(uint32 entry);
135 void handle_interrupt();
136
137 // Lazy memory allocator (one item at a time)
138 void *operator new(size_t size)
139 { return allocator_helper< sheepshaver_cpu, lazy_allocator >::allocate(); }
140 void operator delete(void *p)
141 { allocator_helper< sheepshaver_cpu, lazy_allocator >::deallocate(p); }
142 // FIXME: really make surre array allocation fail at link time?
143 void *operator new[](size_t);
144 void operator delete[](void *p);
145
146 // Make sure the SIGSEGV handler can access CPU registers
147 friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
148 };
149
150 lazy_allocator< sheepshaver_cpu > allocator_helper< sheepshaver_cpu, lazy_allocator >::allocator;
151
152 sheepshaver_cpu::sheepshaver_cpu()
153 : powerpc_cpu()
154 {
155 init_decoder();
156 }
157
158 void sheepshaver_cpu::init_decoder()
159 {
160 #ifndef PPC_NO_STATIC_II_INDEX_TABLE
161 static bool initialized = false;
162 if (initialized)
163 return;
164 initialized = true;
165 #endif
166
167 static const instr_info_t sheep_ii_table[] = {
168 { "sheep",
169 (execute_pmf)&sheepshaver_cpu::execute_sheep,
170 NULL,
171 PPC_I(SHEEP),
172 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
173 }
174 };
175
176 const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
177 D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
178
179 for (int i = 0; i < ii_count; i++) {
180 const instr_info_t * ii = &sheep_ii_table[i];
181 init_decoder_entry(ii);
182 }
183 }
184
185 // Forward declaration for native opcode handler
186 static void NativeOp(int selector);
187
188 /* NativeOp instruction format:
189 +------------+--------------------------+--+----------+------------+
190 | 6 | |FN| OP | 2 |
191 +------------+--------------------------+--+----------+------------+
192 0 5 |6 19 20 21 25 26 31
193 */
194
195 typedef bit_field< 20, 20 > FN_field;
196 typedef bit_field< 21, 25 > NATIVE_OP_field;
197 typedef bit_field< 26, 31 > EMUL_OP_field;
198
199 // Execute SheepShaver instruction
200 void sheepshaver_cpu::execute_sheep(uint32 opcode)
201 {
202 // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
203 assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
204
205 switch (opcode & 0x3f) {
206 case 0: // EMUL_RETURN
207 QuitEmulator();
208 break;
209
210 case 1: // EXEC_RETURN
211 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
212 break;
213
214 case 2: // EXEC_NATIVE
215 NativeOp(NATIVE_OP_field::extract(opcode));
216 if (FN_field::test(opcode))
217 pc() = lr();
218 else
219 pc() += 4;
220 break;
221
222 default: { // EMUL_OP
223 M68kRegisters r68;
224 WriteMacInt32(XLM_68K_R25, gpr(25));
225 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
226 for (int i = 0; i < 8; i++)
227 r68.d[i] = gpr(8 + i);
228 for (int i = 0; i < 7; i++)
229 r68.a[i] = gpr(16 + i);
230 r68.a[7] = gpr(1);
231 EmulOp(&r68, gpr(24), EMUL_OP_field::extract(opcode) - 3);
232 for (int i = 0; i < 8; i++)
233 gpr(8 + i) = r68.d[i];
234 for (int i = 0; i < 7; i++)
235 gpr(16 + i) = r68.a[i];
236 gpr(1) = r68.a[7];
237 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
238 pc() += 4;
239 break;
240 }
241 }
242 }
243
244 // Handle MacOS interrupt
245 void sheepshaver_cpu::interrupt(uint32 entry)
246 {
247 #if EMUL_TIME_STATS
248 interrupt_count++;
249 const clock_t interrupt_start = clock();
250 #endif
251
252 #if !MULTICORE_CPU
253 // Save program counters and branch registers
254 uint32 saved_pc = pc();
255 uint32 saved_lr = lr();
256 uint32 saved_ctr= ctr();
257 uint32 saved_sp = gpr(1);
258 #endif
259
260 // Initialize stack pointer to SheepShaver alternate stack base
261 gpr(1) = SheepStack1Base - 64;
262
263 // Build trampoline to return from interrupt
264 uint32 trampoline[] = { htonl(POWERPC_EMUL_OP | 1) };
265
266 // Prepare registers for nanokernel interrupt routine
267 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
268 kernel_data->v[0x018 >> 2] = htonl(gpr(6));
269
270 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
271 assert(gpr(6) != 0);
272 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
273 WriteMacInt32(gpr(6) + 0x144, gpr(8));
274 WriteMacInt32(gpr(6) + 0x14c, gpr(9));
275 WriteMacInt32(gpr(6) + 0x154, gpr(10));
276 WriteMacInt32(gpr(6) + 0x15c, gpr(11));
277 WriteMacInt32(gpr(6) + 0x164, gpr(12));
278 WriteMacInt32(gpr(6) + 0x16c, gpr(13));
279
280 gpr(1) = KernelDataAddr;
281 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
282 gpr(8) = 0;
283 gpr(10) = (uint32)trampoline;
284 gpr(12) = (uint32)trampoline;
285 gpr(13) = get_cr();
286
287 // rlwimi. r7,r7,8,0,0
288 uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
289 record_cr0(result);
290 gpr(7) = result;
291
292 gpr(11) = 0xf072; // MSR (SRR1)
293 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
294
295 // Enter nanokernel
296 execute(entry);
297
298 #if !MULTICORE_CPU
299 // Restore program counters and branch registers
300 pc() = saved_pc;
301 lr() = saved_lr;
302 ctr()= saved_ctr;
303 gpr(1) = saved_sp;
304 #endif
305
306 #if EMUL_TIME_STATS
307 interrupt_time += (clock() - interrupt_start);
308 #endif
309 }
310
311 // Execute 68k routine
312 void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
313 {
314 #if EMUL_TIME_STATS
315 exec68k_count++;
316 const clock_t exec68k_start = clock();
317 #endif
318
319 #if SAFE_EXEC_68K
320 if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
321 printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
322 #endif
323
324 // Save program counters and branch registers
325 uint32 saved_pc = pc();
326 uint32 saved_lr = lr();
327 uint32 saved_ctr= ctr();
328 uint32 saved_cr = get_cr();
329
330 // Create MacOS stack frame
331 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
332 uint32 sp = gpr(1);
333 gpr(1) -= 56;
334 WriteMacInt32(gpr(1), sp);
335
336 // Save PowerPC registers
337 uint32 saved_GPRs[19];
338 memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
339 #if SAVE_FP_EXEC_68K
340 double saved_FPRs[18];
341 memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
342 #endif
343
344 // Setup registers for 68k emulator
345 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
346 for (int i = 0; i < 8; i++) // d[0]..d[7]
347 gpr(8 + i) = r->d[i];
348 for (int i = 0; i < 7; i++) // a[0]..a[6]
349 gpr(16 + i) = r->a[i];
350 gpr(23) = 0;
351 gpr(24) = entry;
352 gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
353 gpr(26) = 0;
354 gpr(28) = 0; // VBR
355 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
356 gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
357 gpr(31) = KernelDataAddr + 0x1000;
358
359 // Push return address (points to EXEC_RETURN opcode) on stack
360 gpr(1) -= 4;
361 WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
362
363 // Rentering 68k emulator
364 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
365
366 // Set r0 to 0 for 68k emulator
367 gpr(0) = 0;
368
369 // Execute 68k opcode
370 uint32 opcode = ReadMacInt16(gpr(24));
371 gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
372 gpr(29) += opcode * 8;
373 execute(gpr(29));
374
375 // Save r25 (contains current 68k interrupt level)
376 WriteMacInt32(XLM_68K_R25, gpr(25));
377
378 // Reentering EMUL_OP mode
379 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
380
381 // Save 68k registers
382 for (int i = 0; i < 8; i++) // d[0]..d[7]
383 r->d[i] = gpr(8 + i);
384 for (int i = 0; i < 7; i++) // a[0]..a[6]
385 r->a[i] = gpr(16 + i);
386
387 // Restore PowerPC registers
388 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
389 #if SAVE_FP_EXEC_68K
390 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
391 #endif
392
393 // Cleanup stack
394 gpr(1) += 56;
395
396 // Restore program counters and branch registers
397 pc() = saved_pc;
398 lr() = saved_lr;
399 ctr()= saved_ctr;
400 set_cr(saved_cr);
401
402 #if EMUL_TIME_STATS
403 exec68k_time += (clock() - exec68k_start);
404 #endif
405 }
406
407 // Call MacOS PPC code
408 uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
409 {
410 #if EMUL_TIME_STATS
411 macos_exec_count++;
412 const clock_t macos_exec_start = clock();
413 #endif
414
415 // Save program counters and branch registers
416 uint32 saved_pc = pc();
417 uint32 saved_lr = lr();
418 uint32 saved_ctr= ctr();
419
420 // Build trampoline with EXEC_RETURN
421 uint32 trampoline[] = { htonl(POWERPC_EMUL_OP | 1) };
422 lr() = (uint32)trampoline;
423
424 gpr(1) -= 64; // Create stack frame
425 uint32 proc = ReadMacInt32(tvect); // Get routine address
426 uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
427
428 // Save PowerPC registers
429 uint32 regs[8];
430 regs[0] = gpr(2);
431 for (int i = 0; i < nargs; i++)
432 regs[i + 1] = gpr(i + 3);
433
434 // Prepare and call MacOS routine
435 gpr(2) = toc;
436 for (int i = 0; i < nargs; i++)
437 gpr(i + 3) = args[i];
438 execute(proc);
439 uint32 retval = gpr(3);
440
441 // Restore PowerPC registers
442 for (int i = 0; i <= nargs; i++)
443 gpr(i + 2) = regs[i];
444
445 // Cleanup stack
446 gpr(1) += 64;
447
448 // Restore program counters and branch registers
449 pc() = saved_pc;
450 lr() = saved_lr;
451 ctr()= saved_ctr;
452
453 #if EMUL_TIME_STATS
454 macos_exec_time += (clock() - macos_exec_start);
455 #endif
456
457 return retval;
458 }
459
460 // Execute ppc routine
461 inline void sheepshaver_cpu::execute_ppc(uint32 entry)
462 {
463 // Save branch registers
464 uint32 saved_lr = lr();
465
466 const uint32 trampoline[] = { htonl(POWERPC_EMUL_OP | 1) };
467 lr() = (uint32)trampoline;
468
469 execute(entry);
470
471 // Restore branch registers
472 lr() = saved_lr;
473 }
474
475 // Resource Manager thunk
476 extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
477
478 inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
479 {
480 uint32 type = gpr(3);
481 int16 id = gpr(4);
482
483 // Create stack frame
484 gpr(1) -= 56;
485
486 // Call old routine
487 execute_ppc(old_get_resource);
488
489 // Call CheckLoad()
490 uint32 handle = gpr(3);
491 check_load_invoc(type, id, handle);
492 gpr(3) = handle;
493
494 // Cleanup stack
495 gpr(1) += 56;
496 }
497
498
499 /**
500 * SheepShaver CPU engine interface
501 **/
502
503 static sheepshaver_cpu *main_cpu = NULL; // CPU emulator to handle usual control flow
504 static sheepshaver_cpu *interrupt_cpu = NULL; // CPU emulator to handle interrupts
505 static sheepshaver_cpu *current_cpu = NULL; // Current CPU emulator context
506
507 void FlushCodeCache(uintptr start, uintptr end)
508 {
509 D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
510 main_cpu->invalidate_cache_range(start, end);
511 #if MULTICORE_CPU
512 interrupt_cpu->invalidate_cache_range(start, end);
513 #endif
514 }
515
516 static inline void cpu_push(sheepshaver_cpu *new_cpu)
517 {
518 #if MULTICORE_CPU
519 current_cpu = new_cpu;
520 #endif
521 }
522
523 static inline void cpu_pop()
524 {
525 #if MULTICORE_CPU
526 current_cpu = main_cpu;
527 #endif
528 }
529
530 // Dump PPC registers
531 static void dump_registers(void)
532 {
533 current_cpu->dump_registers();
534 }
535
536 // Dump log
537 static void dump_log(void)
538 {
539 current_cpu->dump_log();
540 }
541
542 /*
543 * Initialize CPU emulation
544 */
545
546 static sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
547 {
548 #if ENABLE_VOSF
549 // Handle screen fault
550 extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
551 if (Screen_fault_handler(fault_address, fault_instruction))
552 return SIGSEGV_RETURN_SUCCESS;
553 #endif
554
555 const uintptr addr = (uintptr)fault_address;
556 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
557 // Ignore writes to ROM
558 if ((addr - ROM_BASE) < ROM_SIZE)
559 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
560
561 // Get program counter of target CPU
562 sheepshaver_cpu * const cpu = current_cpu;
563 const uint32 pc = cpu->pc();
564
565 // Fault in Mac ROM or RAM?
566 bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize));
567 if (mac_fault) {
568
569 // "VM settings" during MacOS 8 installation
570 if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
571 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
572
573 // MacOS 8.5 installation
574 else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
575 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
576
577 // MacOS 8 serial drivers on startup
578 else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
579 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
580
581 // MacOS 8.1 serial drivers on startup
582 else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
583 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
584 else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
585 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
586
587 // Ignore all other faults, if requested
588 if (PrefsFindBool("ignoresegv"))
589 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
590 }
591 #else
592 #error "FIXME: You don't have the capability to skip instruction within signal handlers"
593 #endif
594
595 printf("SIGSEGV\n");
596 printf(" pc %p\n", fault_instruction);
597 printf(" ea %p\n", fault_address);
598 printf(" cpu %s\n", current_cpu == main_cpu ? "main" : "interrupts");
599 dump_registers();
600 current_cpu->dump_log();
601 enter_mon();
602 QuitEmulator();
603
604 return SIGSEGV_RETURN_FAILURE;
605 }
606
607 void init_emul_ppc(void)
608 {
609 // Initialize main CPU emulator
610 main_cpu = new sheepshaver_cpu();
611 main_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
612 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
613
614 #if MULTICORE_CPU
615 // Initialize alternate CPU emulator to handle interrupts
616 interrupt_cpu = new sheepshaver_cpu();
617 #endif
618
619 // Install the handler for SIGSEGV
620 sigsegv_install_handler(sigsegv_handler);
621
622 #if ENABLE_MON
623 // Install "regs" command in cxmon
624 mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
625 mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
626 #endif
627
628 #if EMUL_TIME_STATS
629 emul_start_time = clock();
630 #endif
631 }
632
633 /*
634 * Deinitialize emulation
635 */
636
637 void exit_emul_ppc(void)
638 {
639 #if EMUL_TIME_STATS
640 clock_t emul_end_time = clock();
641
642 printf("### Statistics for SheepShaver emulation parts\n");
643 const clock_t emul_time = emul_end_time - emul_start_time;
644 printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
645 printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
646 (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
647
648 #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
649 printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
650 printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
651 double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
652 100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
653 } while (0)
654
655 PRINT_STATS("Execute68k[Trap] execution", exec68k);
656 PRINT_STATS("NativeOp execution", native_exec);
657 PRINT_STATS("MacOS routine execution", macos_exec);
658
659 #undef PRINT_STATS
660 printf("\n");
661 #endif
662
663 delete main_cpu;
664 #if MULTICORE_CPU
665 delete interrupt_cpu;
666 #endif
667 }
668
669 /*
670 * Emulation loop
671 */
672
673 void emul_ppc(uint32 entry)
674 {
675 current_cpu = main_cpu;
676 #if DEBUG
677 current_cpu->start_log();
678 #endif
679 // start emulation loop and enable code translation or caching
680 current_cpu->execute(entry);
681 }
682
683 /*
684 * Handle PowerPC interrupt
685 */
686
687 #if ASYNC_IRQ
688 void HandleInterrupt(void)
689 {
690 main_cpu->handle_interrupt();
691 }
692 #else
693 void TriggerInterrupt(void)
694 {
695 #if 0
696 WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
697 #else
698 // Trigger interrupt to main cpu only
699 if (main_cpu)
700 main_cpu->trigger_interrupt();
701 #endif
702 }
703 #endif
704
705 void sheepshaver_cpu::handle_interrupt(void)
706 {
707 // Do nothing if interrupts are disabled
708 if (*(int32 *)XLM_IRQ_NEST > 0)
709 return;
710
711 // Do nothing if there is no interrupt pending
712 if (InterruptFlags == 0)
713 return;
714
715 // Disable MacOS stack sniffer
716 WriteMacInt32(0x110, 0);
717
718 // Interrupt action depends on current run mode
719 switch (ReadMacInt32(XLM_RUN_MODE)) {
720 case MODE_68K:
721 // 68k emulator active, trigger 68k interrupt level 1
722 assert(current_cpu == main_cpu);
723 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
724 set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
725 break;
726
727 #if INTERRUPTS_IN_NATIVE_MODE
728 case MODE_NATIVE:
729 // 68k emulator inactive, in nanokernel?
730 assert(current_cpu == main_cpu);
731 if (gpr(1) != KernelDataAddr) {
732 // Prepare for 68k interrupt level 1
733 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
734 WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
735 ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
736 | tswap32(kernel_data->v[0x674 >> 2]));
737
738 // Execute nanokernel interrupt routine (this will activate the 68k emulator)
739 DisableInterrupt();
740 cpu_push(interrupt_cpu);
741 if (ROMType == ROMTYPE_NEWWORLD)
742 current_cpu->interrupt(ROM_BASE + 0x312b1c);
743 else
744 current_cpu->interrupt(ROM_BASE + 0x312a3c);
745 cpu_pop();
746 }
747 break;
748 #endif
749
750 #if INTERRUPTS_IN_EMUL_OP_MODE
751 case MODE_EMUL_OP:
752 // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
753 if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
754 #if 1
755 // Execute full 68k interrupt routine
756 M68kRegisters r;
757 uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
758 WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
759 static const uint8 proc[] = {
760 0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
761 0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
762 0x40, 0xe7, // move sr,-(sp) (saved SR)
763 0x20, 0x78, 0x00, 0x064, // move.l $64,a0
764 0x4e, 0xd0, // jmp (a0)
765 M68K_RTS >> 8, M68K_RTS & 0xff // @1
766 };
767 Execute68k((uint32)proc, &r);
768 WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
769 #else
770 // Only update cursor
771 if (HasMacStarted()) {
772 if (InterruptFlags & INTFLAG_VIA) {
773 ClearInterruptFlag(INTFLAG_VIA);
774 ADBInterrupt();
775 ExecutePPC(VideoVBL);
776 }
777 }
778 #endif
779 }
780 break;
781 #endif
782 }
783 }
784
785 /*
786 * Execute NATIVE_OP opcode (called by PowerPC emulator)
787 */
788
789 #define POWERPC_NATIVE_OP_INIT(LR, OP) \
790 tswap32(POWERPC_EMUL_OP | ((LR) << 11) | (((uint32)OP) << 6) | 2)
791
792 // FIXME: Make sure 32-bit relocations are used
793 const uint32 NativeOpTable[NATIVE_OP_MAX] = {
794 POWERPC_NATIVE_OP_INIT(1, NATIVE_PATCH_NAME_REGISTRY),
795 POWERPC_NATIVE_OP_INIT(1, NATIVE_VIDEO_INSTALL_ACCEL),
796 POWERPC_NATIVE_OP_INIT(1, NATIVE_VIDEO_VBL),
797 POWERPC_NATIVE_OP_INIT(1, NATIVE_VIDEO_DO_DRIVER_IO),
798 POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_IRQ),
799 POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_INIT),
800 POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_TERM),
801 POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_OPEN),
802 POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_CLOSE),
803 POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_WPUT),
804 POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_RSRV),
805 POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_NOTHING),
806 POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_OPEN),
807 POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_PRIME_IN),
808 POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_PRIME_OUT),
809 POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_CONTROL),
810 POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_STATUS),
811 POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_CLOSE),
812 POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_RESOURCE),
813 POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_1_RESOURCE),
814 POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_IND_RESOURCE),
815 POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_1_IND_RESOURCE),
816 POWERPC_NATIVE_OP_INIT(1, NATIVE_R_GET_RESOURCE),
817 POWERPC_NATIVE_OP_INIT(0, NATIVE_DISABLE_INTERRUPT),
818 POWERPC_NATIVE_OP_INIT(0, NATIVE_ENABLE_INTERRUPT),
819 POWERPC_NATIVE_OP_INIT(1, NATIVE_MAKE_EXECUTABLE),
820 };
821
822 static void get_resource(void);
823 static void get_1_resource(void);
824 static void get_ind_resource(void);
825 static void get_1_ind_resource(void);
826 static void r_get_resource(void);
827
828 #define GPR(REG) current_cpu->gpr(REG)
829
830 static void NativeOp(int selector)
831 {
832 #if EMUL_TIME_STATS
833 native_exec_count++;
834 const clock_t native_exec_start = clock();
835 #endif
836
837 switch (selector) {
838 case NATIVE_PATCH_NAME_REGISTRY:
839 DoPatchNameRegistry();
840 break;
841 case NATIVE_VIDEO_INSTALL_ACCEL:
842 VideoInstallAccel();
843 break;
844 case NATIVE_VIDEO_VBL:
845 VideoVBL();
846 break;
847 case NATIVE_VIDEO_DO_DRIVER_IO:
848 GPR(3) = (int32)(int16)VideoDoDriverIO((void *)GPR(3), (void *)GPR(4),
849 (void *)GPR(5), GPR(6), GPR(7));
850 break;
851 #ifdef WORDS_BIGENDIAN
852 case NATIVE_ETHER_IRQ:
853 EtherIRQ();
854 break;
855 case NATIVE_ETHER_INIT:
856 GPR(3) = InitStreamModule((void *)GPR(3));
857 break;
858 case NATIVE_ETHER_TERM:
859 TerminateStreamModule();
860 break;
861 case NATIVE_ETHER_OPEN:
862 GPR(3) = ether_open((queue_t *)GPR(3), (void *)GPR(4), GPR(5), GPR(6), (void*)GPR(7));
863 break;
864 case NATIVE_ETHER_CLOSE:
865 GPR(3) = ether_close((queue_t *)GPR(3), GPR(4), (void *)GPR(5));
866 break;
867 case NATIVE_ETHER_WPUT:
868 GPR(3) = ether_wput((queue_t *)GPR(3), (mblk_t *)GPR(4));
869 break;
870 case NATIVE_ETHER_RSRV:
871 GPR(3) = ether_rsrv((queue_t *)GPR(3));
872 break;
873 #else
874 case NATIVE_ETHER_INIT:
875 // FIXME: needs more complicated thunks
876 GPR(3) = false;
877 break;
878 #endif
879 case NATIVE_SERIAL_NOTHING:
880 case NATIVE_SERIAL_OPEN:
881 case NATIVE_SERIAL_PRIME_IN:
882 case NATIVE_SERIAL_PRIME_OUT:
883 case NATIVE_SERIAL_CONTROL:
884 case NATIVE_SERIAL_STATUS:
885 case NATIVE_SERIAL_CLOSE: {
886 typedef int16 (*SerialCallback)(uint32, uint32);
887 static const SerialCallback serial_callbacks[] = {
888 SerialNothing,
889 SerialOpen,
890 SerialPrimeIn,
891 SerialPrimeOut,
892 SerialControl,
893 SerialStatus,
894 SerialClose
895 };
896 GPR(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](GPR(3), GPR(4));
897 break;
898 }
899 case NATIVE_GET_RESOURCE:
900 case NATIVE_GET_1_RESOURCE:
901 case NATIVE_GET_IND_RESOURCE:
902 case NATIVE_GET_1_IND_RESOURCE:
903 case NATIVE_R_GET_RESOURCE: {
904 typedef void (*GetResourceCallback)(void);
905 static const GetResourceCallback get_resource_callbacks[] = {
906 get_resource,
907 get_1_resource,
908 get_ind_resource,
909 get_1_ind_resource,
910 r_get_resource
911 };
912 get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
913 break;
914 }
915 case NATIVE_DISABLE_INTERRUPT:
916 DisableInterrupt();
917 break;
918 case NATIVE_ENABLE_INTERRUPT:
919 EnableInterrupt();
920 break;
921 case NATIVE_MAKE_EXECUTABLE:
922 MakeExecutable(0, (void *)GPR(4), GPR(5));
923 break;
924 default:
925 printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
926 QuitEmulator();
927 break;
928 }
929
930 #if EMUL_TIME_STATS
931 native_exec_time += (clock() - native_exec_start);
932 #endif
933 }
934
935 /*
936 * Execute native subroutine (LR must contain return address)
937 */
938
939 void ExecuteNative(int selector)
940 {
941 uint32 tvect[2];
942 tvect[0] = tswap32(POWERPC_NATIVE_OP_FUNC(selector));
943 tvect[1] = 0; // Fake TVECT
944 RoutineDescriptor desc = BUILD_PPC_ROUTINE_DESCRIPTOR(0, tvect);
945 M68kRegisters r;
946 Execute68k((uint32)&desc, &r);
947 }
948
949 /*
950 * Execute 68k subroutine (must be ended with EXEC_RETURN)
951 * This must only be called by the emul_thread when in EMUL_OP mode
952 * r->a[7] is unused, the routine runs on the caller's stack
953 */
954
955 void Execute68k(uint32 pc, M68kRegisters *r)
956 {
957 current_cpu->execute_68k(pc, r);
958 }
959
960 /*
961 * Execute 68k A-Trap from EMUL_OP routine
962 * r->a[7] is unused, the routine runs on the caller's stack
963 */
964
965 void Execute68kTrap(uint16 trap, M68kRegisters *r)
966 {
967 uint16 proc[2];
968 proc[0] = htons(trap);
969 proc[1] = htons(M68K_RTS);
970 Execute68k((uint32)proc, r);
971 }
972
973 /*
974 * Call MacOS PPC code
975 */
976
977 uint32 call_macos(uint32 tvect)
978 {
979 return current_cpu->execute_macos_code(tvect, 0, NULL);
980 }
981
982 uint32 call_macos1(uint32 tvect, uint32 arg1)
983 {
984 const uint32 args[] = { arg1 };
985 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
986 }
987
988 uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
989 {
990 const uint32 args[] = { arg1, arg2 };
991 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
992 }
993
994 uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
995 {
996 const uint32 args[] = { arg1, arg2, arg3 };
997 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
998 }
999
1000 uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1001 {
1002 const uint32 args[] = { arg1, arg2, arg3, arg4 };
1003 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1004 }
1005
1006 uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1007 {
1008 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1009 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1010 }
1011
1012 uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1013 {
1014 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1015 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1016 }
1017
1018 uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1019 {
1020 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1021 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1022 }
1023
1024 /*
1025 * Resource Manager thunks
1026 */
1027
1028 void get_resource(void)
1029 {
1030 current_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1031 }
1032
1033 void get_1_resource(void)
1034 {
1035 current_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1036 }
1037
1038 void get_ind_resource(void)
1039 {
1040 current_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1041 }
1042
1043 void get_1_ind_resource(void)
1044 {
1045 current_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1046 }
1047
1048 void r_get_resource(void)
1049 {
1050 current_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1051 }