ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.21
Committed: 2003-12-04T17:26:38Z (20 years, 6 months ago) by gbeauche
Branch: MAIN
Changes since 1.20: +21 -54 lines
Log Message:
Add new thunking system for 64-bit fixes.

File Contents

# Content
1 /*
2 * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3 *
4 * SheepShaver (C) 1997-2002 Christian Bauer and Marc Hellwig
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 #include "sysdeps.h"
22 #include "cpu_emulation.h"
23 #include "main.h"
24 #include "prefs.h"
25 #include "xlowmem.h"
26 #include "emul_op.h"
27 #include "rom_patches.h"
28 #include "macos_util.h"
29 #include "block-alloc.hpp"
30 #include "sigsegv.h"
31 #include "cpu/ppc/ppc-cpu.hpp"
32 #include "cpu/ppc/ppc-operations.hpp"
33 #include "cpu/ppc/ppc-instructions.hpp"
34 #include "thunks.h"
35
36 // Used for NativeOp trampolines
37 #include "video.h"
38 #include "name_registry.h"
39 #include "serial.h"
40 #include "ether.h"
41
42 #include <stdio.h>
43
44 #if ENABLE_MON
45 #include "mon.h"
46 #include "mon_disass.h"
47 #endif
48
49 #define DEBUG 0
50 #include "debug.h"
51
52 // Emulation time statistics
53 #define EMUL_TIME_STATS 1
54
55 #if EMUL_TIME_STATS
56 static clock_t emul_start_time;
57 static uint32 interrupt_count = 0;
58 static clock_t interrupt_time = 0;
59 static uint32 exec68k_count = 0;
60 static clock_t exec68k_time = 0;
61 static uint32 native_exec_count = 0;
62 static clock_t native_exec_time = 0;
63 static uint32 macos_exec_count = 0;
64 static clock_t macos_exec_time = 0;
65 #endif
66
67 static void enter_mon(void)
68 {
69 // Start up mon in real-mode
70 #if ENABLE_MON
71 char *arg[4] = {"mon", "-m", "-r", NULL};
72 mon(3, arg);
73 #endif
74 }
75
76 // PowerPC EmulOp to exit from emulation looop
77 const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
78
79 // Enable multicore (main/interrupts) cpu emulation?
80 #define MULTICORE_CPU (ASYNC_IRQ ? 1 : 0)
81
82 // Enable Execute68k() safety checks?
83 #define SAFE_EXEC_68K 1
84
85 // Save FP state in Execute68k()?
86 #define SAVE_FP_EXEC_68K 1
87
88 // Interrupts in EMUL_OP mode?
89 #define INTERRUPTS_IN_EMUL_OP_MODE 1
90
91 // Interrupts in native mode?
92 #define INTERRUPTS_IN_NATIVE_MODE 1
93
94 // Pointer to Kernel Data
95 static KernelData * const kernel_data = (KernelData *)KERNEL_DATA_BASE;
96
97 // SIGSEGV handler
98 static sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
99
100 // JIT Compiler enabled?
101 static inline bool enable_jit_p()
102 {
103 return PrefsFindBool("jit");
104 }
105
106
107 /**
108 * PowerPC emulator glue with special 'sheep' opcodes
109 **/
110
111 enum {
112 PPC_I(SHEEP) = PPC_I(MAX),
113 PPC_I(SHEEP_MAX)
114 };
115
116 class sheepshaver_cpu
117 : public powerpc_cpu
118 {
119 void init_decoder();
120 void execute_sheep(uint32 opcode);
121
122 public:
123
124 // Constructor
125 sheepshaver_cpu();
126
127 // Condition Register accessors
128 uint32 get_cr() const { return cr().get(); }
129 void set_cr(uint32 v) { cr().set(v); }
130
131 // Execute 68k routine
132 void execute_68k(uint32 entry, M68kRegisters *r);
133
134 // Execute ppc routine
135 void execute_ppc(uint32 entry);
136
137 // Execute MacOS/PPC code
138 uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
139
140 // Resource manager thunk
141 void get_resource(uint32 old_get_resource);
142
143 // Handle MacOS interrupt
144 void interrupt(uint32 entry);
145 void handle_interrupt();
146
147 // Lazy memory allocator (one item at a time)
148 void *operator new(size_t size)
149 { return allocator_helper< sheepshaver_cpu, lazy_allocator >::allocate(); }
150 void operator delete(void *p)
151 { allocator_helper< sheepshaver_cpu, lazy_allocator >::deallocate(p); }
152 // FIXME: really make surre array allocation fail at link time?
153 void *operator new[](size_t);
154 void operator delete[](void *p);
155
156 // Make sure the SIGSEGV handler can access CPU registers
157 friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
158 };
159
160 lazy_allocator< sheepshaver_cpu > allocator_helper< sheepshaver_cpu, lazy_allocator >::allocator;
161
162 sheepshaver_cpu::sheepshaver_cpu()
163 : powerpc_cpu(enable_jit_p())
164 {
165 init_decoder();
166 }
167
168 void sheepshaver_cpu::init_decoder()
169 {
170 #ifndef PPC_NO_STATIC_II_INDEX_TABLE
171 static bool initialized = false;
172 if (initialized)
173 return;
174 initialized = true;
175 #endif
176
177 static const instr_info_t sheep_ii_table[] = {
178 { "sheep",
179 (execute_pmf)&sheepshaver_cpu::execute_sheep,
180 NULL,
181 PPC_I(SHEEP),
182 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
183 }
184 };
185
186 const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
187 D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
188
189 for (int i = 0; i < ii_count; i++) {
190 const instr_info_t * ii = &sheep_ii_table[i];
191 init_decoder_entry(ii);
192 }
193 }
194
195 // Forward declaration for native opcode handler
196 static void NativeOp(int selector);
197
198 /* NativeOp instruction format:
199 +------------+--------------------------+--+----------+------------+
200 | 6 | |FN| OP | 2 |
201 +------------+--------------------------+--+----------+------------+
202 0 5 |6 19 20 21 25 26 31
203 */
204
205 typedef bit_field< 20, 20 > FN_field;
206 typedef bit_field< 21, 25 > NATIVE_OP_field;
207 typedef bit_field< 26, 31 > EMUL_OP_field;
208
209 // Execute SheepShaver instruction
210 void sheepshaver_cpu::execute_sheep(uint32 opcode)
211 {
212 // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
213 assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
214
215 switch (opcode & 0x3f) {
216 case 0: // EMUL_RETURN
217 QuitEmulator();
218 break;
219
220 case 1: // EXEC_RETURN
221 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
222 break;
223
224 case 2: // EXEC_NATIVE
225 NativeOp(NATIVE_OP_field::extract(opcode));
226 if (FN_field::test(opcode))
227 pc() = lr();
228 else
229 pc() += 4;
230 break;
231
232 default: { // EMUL_OP
233 M68kRegisters r68;
234 WriteMacInt32(XLM_68K_R25, gpr(25));
235 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
236 for (int i = 0; i < 8; i++)
237 r68.d[i] = gpr(8 + i);
238 for (int i = 0; i < 7; i++)
239 r68.a[i] = gpr(16 + i);
240 r68.a[7] = gpr(1);
241 EmulOp(&r68, gpr(24), EMUL_OP_field::extract(opcode) - 3);
242 for (int i = 0; i < 8; i++)
243 gpr(8 + i) = r68.d[i];
244 for (int i = 0; i < 7; i++)
245 gpr(16 + i) = r68.a[i];
246 gpr(1) = r68.a[7];
247 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
248 pc() += 4;
249 break;
250 }
251 }
252 }
253
254 // Handle MacOS interrupt
255 void sheepshaver_cpu::interrupt(uint32 entry)
256 {
257 #if EMUL_TIME_STATS
258 interrupt_count++;
259 const clock_t interrupt_start = clock();
260 #endif
261
262 #if !MULTICORE_CPU
263 // Save program counters and branch registers
264 uint32 saved_pc = pc();
265 uint32 saved_lr = lr();
266 uint32 saved_ctr= ctr();
267 uint32 saved_sp = gpr(1);
268 #endif
269
270 // Initialize stack pointer to SheepShaver alternate stack base
271 SheepArray<64> stack_area;
272 gpr(1) = stack_area.addr();
273
274 // Build trampoline to return from interrupt
275 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
276
277 // Prepare registers for nanokernel interrupt routine
278 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
279 kernel_data->v[0x018 >> 2] = htonl(gpr(6));
280
281 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
282 assert(gpr(6) != 0);
283 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
284 WriteMacInt32(gpr(6) + 0x144, gpr(8));
285 WriteMacInt32(gpr(6) + 0x14c, gpr(9));
286 WriteMacInt32(gpr(6) + 0x154, gpr(10));
287 WriteMacInt32(gpr(6) + 0x15c, gpr(11));
288 WriteMacInt32(gpr(6) + 0x164, gpr(12));
289 WriteMacInt32(gpr(6) + 0x16c, gpr(13));
290
291 gpr(1) = KernelDataAddr;
292 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
293 gpr(8) = 0;
294 gpr(10) = trampoline.addr();
295 gpr(12) = trampoline.addr();
296 gpr(13) = get_cr();
297
298 // rlwimi. r7,r7,8,0,0
299 uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
300 record_cr0(result);
301 gpr(7) = result;
302
303 gpr(11) = 0xf072; // MSR (SRR1)
304 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
305
306 // Enter nanokernel
307 execute(entry);
308
309 #if !MULTICORE_CPU
310 // Restore program counters and branch registers
311 pc() = saved_pc;
312 lr() = saved_lr;
313 ctr()= saved_ctr;
314 gpr(1) = saved_sp;
315 #endif
316
317 #if EMUL_TIME_STATS
318 interrupt_time += (clock() - interrupt_start);
319 #endif
320 }
321
322 // Execute 68k routine
323 void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
324 {
325 #if EMUL_TIME_STATS
326 exec68k_count++;
327 const clock_t exec68k_start = clock();
328 #endif
329
330 #if SAFE_EXEC_68K
331 if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
332 printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
333 #endif
334
335 // Save program counters and branch registers
336 uint32 saved_pc = pc();
337 uint32 saved_lr = lr();
338 uint32 saved_ctr= ctr();
339 uint32 saved_cr = get_cr();
340
341 // Create MacOS stack frame
342 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
343 uint32 sp = gpr(1);
344 gpr(1) -= 56;
345 WriteMacInt32(gpr(1), sp);
346
347 // Save PowerPC registers
348 uint32 saved_GPRs[19];
349 memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
350 #if SAVE_FP_EXEC_68K
351 double saved_FPRs[18];
352 memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
353 #endif
354
355 // Setup registers for 68k emulator
356 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
357 for (int i = 0; i < 8; i++) // d[0]..d[7]
358 gpr(8 + i) = r->d[i];
359 for (int i = 0; i < 7; i++) // a[0]..a[6]
360 gpr(16 + i) = r->a[i];
361 gpr(23) = 0;
362 gpr(24) = entry;
363 gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
364 gpr(26) = 0;
365 gpr(28) = 0; // VBR
366 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
367 gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
368 gpr(31) = KernelDataAddr + 0x1000;
369
370 // Push return address (points to EXEC_RETURN opcode) on stack
371 gpr(1) -= 4;
372 WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
373
374 // Rentering 68k emulator
375 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
376
377 // Set r0 to 0 for 68k emulator
378 gpr(0) = 0;
379
380 // Execute 68k opcode
381 uint32 opcode = ReadMacInt16(gpr(24));
382 gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
383 gpr(29) += opcode * 8;
384 execute(gpr(29));
385
386 // Save r25 (contains current 68k interrupt level)
387 WriteMacInt32(XLM_68K_R25, gpr(25));
388
389 // Reentering EMUL_OP mode
390 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
391
392 // Save 68k registers
393 for (int i = 0; i < 8; i++) // d[0]..d[7]
394 r->d[i] = gpr(8 + i);
395 for (int i = 0; i < 7; i++) // a[0]..a[6]
396 r->a[i] = gpr(16 + i);
397
398 // Restore PowerPC registers
399 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
400 #if SAVE_FP_EXEC_68K
401 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
402 #endif
403
404 // Cleanup stack
405 gpr(1) += 56;
406
407 // Restore program counters and branch registers
408 pc() = saved_pc;
409 lr() = saved_lr;
410 ctr()= saved_ctr;
411 set_cr(saved_cr);
412
413 #if EMUL_TIME_STATS
414 exec68k_time += (clock() - exec68k_start);
415 #endif
416 }
417
418 // Call MacOS PPC code
419 uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
420 {
421 #if EMUL_TIME_STATS
422 macos_exec_count++;
423 const clock_t macos_exec_start = clock();
424 #endif
425
426 // Save program counters and branch registers
427 uint32 saved_pc = pc();
428 uint32 saved_lr = lr();
429 uint32 saved_ctr= ctr();
430
431 // Build trampoline with EXEC_RETURN
432 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
433 lr() = trampoline.addr();
434
435 gpr(1) -= 64; // Create stack frame
436 uint32 proc = ReadMacInt32(tvect); // Get routine address
437 uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
438
439 // Save PowerPC registers
440 uint32 regs[8];
441 regs[0] = gpr(2);
442 for (int i = 0; i < nargs; i++)
443 regs[i + 1] = gpr(i + 3);
444
445 // Prepare and call MacOS routine
446 gpr(2) = toc;
447 for (int i = 0; i < nargs; i++)
448 gpr(i + 3) = args[i];
449 execute(proc);
450 uint32 retval = gpr(3);
451
452 // Restore PowerPC registers
453 for (int i = 0; i <= nargs; i++)
454 gpr(i + 2) = regs[i];
455
456 // Cleanup stack
457 gpr(1) += 64;
458
459 // Restore program counters and branch registers
460 pc() = saved_pc;
461 lr() = saved_lr;
462 ctr()= saved_ctr;
463
464 #if EMUL_TIME_STATS
465 macos_exec_time += (clock() - macos_exec_start);
466 #endif
467
468 return retval;
469 }
470
471 // Execute ppc routine
472 inline void sheepshaver_cpu::execute_ppc(uint32 entry)
473 {
474 // Save branch registers
475 uint32 saved_lr = lr();
476
477 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
478 WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
479 lr() = trampoline.addr();
480
481 execute(entry);
482
483 // Restore branch registers
484 lr() = saved_lr;
485 }
486
487 // Resource Manager thunk
488 extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
489
490 inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
491 {
492 uint32 type = gpr(3);
493 int16 id = gpr(4);
494
495 // Create stack frame
496 gpr(1) -= 56;
497
498 // Call old routine
499 execute_ppc(old_get_resource);
500
501 // Call CheckLoad()
502 uint32 handle = gpr(3);
503 check_load_invoc(type, id, handle);
504 gpr(3) = handle;
505
506 // Cleanup stack
507 gpr(1) += 56;
508 }
509
510
511 /**
512 * SheepShaver CPU engine interface
513 **/
514
515 static sheepshaver_cpu *main_cpu = NULL; // CPU emulator to handle usual control flow
516 static sheepshaver_cpu *interrupt_cpu = NULL; // CPU emulator to handle interrupts
517 static sheepshaver_cpu *current_cpu = NULL; // Current CPU emulator context
518
519 void FlushCodeCache(uintptr start, uintptr end)
520 {
521 D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
522 main_cpu->invalidate_cache_range(start, end);
523 #if MULTICORE_CPU
524 interrupt_cpu->invalidate_cache_range(start, end);
525 #endif
526 }
527
528 static inline void cpu_push(sheepshaver_cpu *new_cpu)
529 {
530 #if MULTICORE_CPU
531 current_cpu = new_cpu;
532 #endif
533 }
534
535 static inline void cpu_pop()
536 {
537 #if MULTICORE_CPU
538 current_cpu = main_cpu;
539 #endif
540 }
541
542 // Dump PPC registers
543 static void dump_registers(void)
544 {
545 current_cpu->dump_registers();
546 }
547
548 // Dump log
549 static void dump_log(void)
550 {
551 current_cpu->dump_log();
552 }
553
554 /*
555 * Initialize CPU emulation
556 */
557
558 static sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
559 {
560 #if ENABLE_VOSF
561 // Handle screen fault
562 extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
563 if (Screen_fault_handler(fault_address, fault_instruction))
564 return SIGSEGV_RETURN_SUCCESS;
565 #endif
566
567 const uintptr addr = (uintptr)fault_address;
568 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
569 // Ignore writes to ROM
570 if ((addr - ROM_BASE) < ROM_SIZE)
571 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
572
573 // Get program counter of target CPU
574 sheepshaver_cpu * const cpu = current_cpu;
575 const uint32 pc = cpu->pc();
576
577 // Fault in Mac ROM or RAM?
578 bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize));
579 if (mac_fault) {
580
581 // "VM settings" during MacOS 8 installation
582 if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
583 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
584
585 // MacOS 8.5 installation
586 else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
587 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
588
589 // MacOS 8 serial drivers on startup
590 else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
591 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
592
593 // MacOS 8.1 serial drivers on startup
594 else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
595 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
596 else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
597 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
598
599 // Ignore all other faults, if requested
600 if (PrefsFindBool("ignoresegv"))
601 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
602 }
603 #else
604 #error "FIXME: You don't have the capability to skip instruction within signal handlers"
605 #endif
606
607 printf("SIGSEGV\n");
608 printf(" pc %p\n", fault_instruction);
609 printf(" ea %p\n", fault_address);
610 printf(" cpu %s\n", current_cpu == main_cpu ? "main" : "interrupts");
611 dump_registers();
612 current_cpu->dump_log();
613 enter_mon();
614 QuitEmulator();
615
616 return SIGSEGV_RETURN_FAILURE;
617 }
618
619 void init_emul_ppc(void)
620 {
621 // Initialize main CPU emulator
622 main_cpu = new sheepshaver_cpu();
623 main_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
624 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
625
626 #if MULTICORE_CPU
627 // Initialize alternate CPU emulator to handle interrupts
628 interrupt_cpu = new sheepshaver_cpu();
629 #endif
630
631 // Install the handler for SIGSEGV
632 sigsegv_install_handler(sigsegv_handler);
633
634 #if ENABLE_MON
635 // Install "regs" command in cxmon
636 mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
637 mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
638 #endif
639
640 #if EMUL_TIME_STATS
641 emul_start_time = clock();
642 #endif
643 }
644
645 /*
646 * Deinitialize emulation
647 */
648
649 void exit_emul_ppc(void)
650 {
651 #if EMUL_TIME_STATS
652 clock_t emul_end_time = clock();
653
654 printf("### Statistics for SheepShaver emulation parts\n");
655 const clock_t emul_time = emul_end_time - emul_start_time;
656 printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
657 printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
658 (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
659
660 #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
661 printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
662 printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
663 double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
664 100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
665 } while (0)
666
667 PRINT_STATS("Execute68k[Trap] execution", exec68k);
668 PRINT_STATS("NativeOp execution", native_exec);
669 PRINT_STATS("MacOS routine execution", macos_exec);
670
671 #undef PRINT_STATS
672 printf("\n");
673 #endif
674
675 delete main_cpu;
676 #if MULTICORE_CPU
677 delete interrupt_cpu;
678 #endif
679 }
680
681 /*
682 * Emulation loop
683 */
684
685 void emul_ppc(uint32 entry)
686 {
687 current_cpu = main_cpu;
688 #if DEBUG
689 current_cpu->start_log();
690 #endif
691 // start emulation loop and enable code translation or caching
692 current_cpu->execute(entry);
693 }
694
695 /*
696 * Handle PowerPC interrupt
697 */
698
699 #if ASYNC_IRQ
700 void HandleInterrupt(void)
701 {
702 main_cpu->handle_interrupt();
703 }
704 #else
705 void TriggerInterrupt(void)
706 {
707 #if 0
708 WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
709 #else
710 // Trigger interrupt to main cpu only
711 if (main_cpu)
712 main_cpu->trigger_interrupt();
713 #endif
714 }
715 #endif
716
717 void sheepshaver_cpu::handle_interrupt(void)
718 {
719 // Do nothing if interrupts are disabled
720 if (*(int32 *)XLM_IRQ_NEST > 0)
721 return;
722
723 // Do nothing if there is no interrupt pending
724 if (InterruptFlags == 0)
725 return;
726
727 // Disable MacOS stack sniffer
728 WriteMacInt32(0x110, 0);
729
730 // Interrupt action depends on current run mode
731 switch (ReadMacInt32(XLM_RUN_MODE)) {
732 case MODE_68K:
733 // 68k emulator active, trigger 68k interrupt level 1
734 assert(current_cpu == main_cpu);
735 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
736 set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
737 break;
738
739 #if INTERRUPTS_IN_NATIVE_MODE
740 case MODE_NATIVE:
741 // 68k emulator inactive, in nanokernel?
742 assert(current_cpu == main_cpu);
743 if (gpr(1) != KernelDataAddr) {
744 // Prepare for 68k interrupt level 1
745 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
746 WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
747 ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
748 | tswap32(kernel_data->v[0x674 >> 2]));
749
750 // Execute nanokernel interrupt routine (this will activate the 68k emulator)
751 DisableInterrupt();
752 cpu_push(interrupt_cpu);
753 if (ROMType == ROMTYPE_NEWWORLD)
754 current_cpu->interrupt(ROM_BASE + 0x312b1c);
755 else
756 current_cpu->interrupt(ROM_BASE + 0x312a3c);
757 cpu_pop();
758 }
759 break;
760 #endif
761
762 #if INTERRUPTS_IN_EMUL_OP_MODE
763 case MODE_EMUL_OP:
764 // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
765 if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
766 #if 1
767 // Execute full 68k interrupt routine
768 M68kRegisters r;
769 uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
770 WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
771 static const uint8 proc[] = {
772 0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
773 0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
774 0x40, 0xe7, // move sr,-(sp) (saved SR)
775 0x20, 0x78, 0x00, 0x064, // move.l $64,a0
776 0x4e, 0xd0, // jmp (a0)
777 M68K_RTS >> 8, M68K_RTS & 0xff // @1
778 };
779 Execute68k((uint32)proc, &r);
780 WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
781 #else
782 // Only update cursor
783 if (HasMacStarted()) {
784 if (InterruptFlags & INTFLAG_VIA) {
785 ClearInterruptFlag(INTFLAG_VIA);
786 ADBInterrupt();
787 ExecutePPC(VideoVBL);
788 }
789 }
790 #endif
791 }
792 break;
793 #endif
794 }
795 }
796
797 static void get_resource(void);
798 static void get_1_resource(void);
799 static void get_ind_resource(void);
800 static void get_1_ind_resource(void);
801 static void r_get_resource(void);
802
803 #define GPR(REG) current_cpu->gpr(REG)
804
805 static void NativeOp(int selector)
806 {
807 #if EMUL_TIME_STATS
808 native_exec_count++;
809 const clock_t native_exec_start = clock();
810 #endif
811
812 switch (selector) {
813 case NATIVE_PATCH_NAME_REGISTRY:
814 DoPatchNameRegistry();
815 break;
816 case NATIVE_VIDEO_INSTALL_ACCEL:
817 VideoInstallAccel();
818 break;
819 case NATIVE_VIDEO_VBL:
820 VideoVBL();
821 break;
822 case NATIVE_VIDEO_DO_DRIVER_IO:
823 GPR(3) = (int32)(int16)VideoDoDriverIO((void *)GPR(3), (void *)GPR(4),
824 (void *)GPR(5), GPR(6), GPR(7));
825 break;
826 #ifdef WORDS_BIGENDIAN
827 case NATIVE_ETHER_IRQ:
828 EtherIRQ();
829 break;
830 case NATIVE_ETHER_INIT:
831 GPR(3) = InitStreamModule((void *)GPR(3));
832 break;
833 case NATIVE_ETHER_TERM:
834 TerminateStreamModule();
835 break;
836 case NATIVE_ETHER_OPEN:
837 GPR(3) = ether_open((queue_t *)GPR(3), (void *)GPR(4), GPR(5), GPR(6), (void*)GPR(7));
838 break;
839 case NATIVE_ETHER_CLOSE:
840 GPR(3) = ether_close((queue_t *)GPR(3), GPR(4), (void *)GPR(5));
841 break;
842 case NATIVE_ETHER_WPUT:
843 GPR(3) = ether_wput((queue_t *)GPR(3), (mblk_t *)GPR(4));
844 break;
845 case NATIVE_ETHER_RSRV:
846 GPR(3) = ether_rsrv((queue_t *)GPR(3));
847 break;
848 #else
849 case NATIVE_ETHER_INIT:
850 // FIXME: needs more complicated thunks
851 GPR(3) = false;
852 break;
853 #endif
854 case NATIVE_SERIAL_NOTHING:
855 case NATIVE_SERIAL_OPEN:
856 case NATIVE_SERIAL_PRIME_IN:
857 case NATIVE_SERIAL_PRIME_OUT:
858 case NATIVE_SERIAL_CONTROL:
859 case NATIVE_SERIAL_STATUS:
860 case NATIVE_SERIAL_CLOSE: {
861 typedef int16 (*SerialCallback)(uint32, uint32);
862 static const SerialCallback serial_callbacks[] = {
863 SerialNothing,
864 SerialOpen,
865 SerialPrimeIn,
866 SerialPrimeOut,
867 SerialControl,
868 SerialStatus,
869 SerialClose
870 };
871 GPR(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](GPR(3), GPR(4));
872 break;
873 }
874 case NATIVE_GET_RESOURCE:
875 case NATIVE_GET_1_RESOURCE:
876 case NATIVE_GET_IND_RESOURCE:
877 case NATIVE_GET_1_IND_RESOURCE:
878 case NATIVE_R_GET_RESOURCE: {
879 typedef void (*GetResourceCallback)(void);
880 static const GetResourceCallback get_resource_callbacks[] = {
881 get_resource,
882 get_1_resource,
883 get_ind_resource,
884 get_1_ind_resource,
885 r_get_resource
886 };
887 get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
888 break;
889 }
890 case NATIVE_DISABLE_INTERRUPT:
891 DisableInterrupt();
892 break;
893 case NATIVE_ENABLE_INTERRUPT:
894 EnableInterrupt();
895 break;
896 case NATIVE_MAKE_EXECUTABLE:
897 MakeExecutable(0, (void *)GPR(4), GPR(5));
898 break;
899 default:
900 printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
901 QuitEmulator();
902 break;
903 }
904
905 #if EMUL_TIME_STATS
906 native_exec_time += (clock() - native_exec_start);
907 #endif
908 }
909
910 /*
911 * Execute native subroutine (LR must contain return address)
912 */
913
914 void ExecuteNative(int selector)
915 {
916 SheepRoutineDescriptor desc(0, NativeTVECT(selector));
917 M68kRegisters r;
918 Execute68k(desc.addr(), &r);
919 }
920
921 /*
922 * Execute 68k subroutine (must be ended with EXEC_RETURN)
923 * This must only be called by the emul_thread when in EMUL_OP mode
924 * r->a[7] is unused, the routine runs on the caller's stack
925 */
926
927 void Execute68k(uint32 pc, M68kRegisters *r)
928 {
929 current_cpu->execute_68k(pc, r);
930 }
931
932 /*
933 * Execute 68k A-Trap from EMUL_OP routine
934 * r->a[7] is unused, the routine runs on the caller's stack
935 */
936
937 void Execute68kTrap(uint16 trap, M68kRegisters *r)
938 {
939 SheepVar proc_var(4);
940 uint32 proc = proc_var.addr();
941 WriteMacInt16(proc, trap);
942 WriteMacInt16(proc + 2, M68K_RTS);
943 Execute68k(proc, r);
944 }
945
946 /*
947 * Call MacOS PPC code
948 */
949
950 uint32 call_macos(uint32 tvect)
951 {
952 return current_cpu->execute_macos_code(tvect, 0, NULL);
953 }
954
955 uint32 call_macos1(uint32 tvect, uint32 arg1)
956 {
957 const uint32 args[] = { arg1 };
958 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
959 }
960
961 uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
962 {
963 const uint32 args[] = { arg1, arg2 };
964 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
965 }
966
967 uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
968 {
969 const uint32 args[] = { arg1, arg2, arg3 };
970 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
971 }
972
973 uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
974 {
975 const uint32 args[] = { arg1, arg2, arg3, arg4 };
976 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
977 }
978
979 uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
980 {
981 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
982 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
983 }
984
985 uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
986 {
987 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
988 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
989 }
990
991 uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
992 {
993 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
994 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
995 }
996
997 /*
998 * Resource Manager thunks
999 */
1000
1001 void get_resource(void)
1002 {
1003 current_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1004 }
1005
1006 void get_1_resource(void)
1007 {
1008 current_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1009 }
1010
1011 void get_ind_resource(void)
1012 {
1013 current_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1014 }
1015
1016 void get_1_ind_resource(void)
1017 {
1018 current_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1019 }
1020
1021 void r_get_resource(void)
1022 {
1023 current_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1024 }