ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.34
Committed: 2004-04-22T21:45:18Z (20 years, 1 month ago) by gbeauche
Branch: MAIN
Changes since 1.33: +6 -6 lines
Log Message:
NQD: use ReadMacInt*() and WriteMacInt*() accessors, i.e. code should now
be little-endian and 64-bit safe.

File Contents

# Content
1 /*
2 * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3 *
4 * SheepShaver (C) 1997-2004 Christian Bauer and Marc Hellwig
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 #include "sysdeps.h"
22 #include "cpu_emulation.h"
23 #include "main.h"
24 #include "prefs.h"
25 #include "xlowmem.h"
26 #include "emul_op.h"
27 #include "rom_patches.h"
28 #include "macos_util.h"
29 #include "block-alloc.hpp"
30 #include "sigsegv.h"
31 #include "cpu/ppc/ppc-cpu.hpp"
32 #include "cpu/ppc/ppc-operations.hpp"
33 #include "cpu/ppc/ppc-instructions.hpp"
34 #include "thunks.h"
35
36 // Used for NativeOp trampolines
37 #include "video.h"
38 #include "name_registry.h"
39 #include "serial.h"
40 #include "ether.h"
41
42 #include <stdio.h>
43 #include <stdlib.h>
44
45 #if ENABLE_MON
46 #include "mon.h"
47 #include "mon_disass.h"
48 #endif
49
50 #define DEBUG 0
51 #include "debug.h"
52
53 // Emulation time statistics
54 #define EMUL_TIME_STATS 1
55
56 #if EMUL_TIME_STATS
57 static clock_t emul_start_time;
58 static uint32 interrupt_count = 0;
59 static clock_t interrupt_time = 0;
60 static uint32 exec68k_count = 0;
61 static clock_t exec68k_time = 0;
62 static uint32 native_exec_count = 0;
63 static clock_t native_exec_time = 0;
64 static uint32 macos_exec_count = 0;
65 static clock_t macos_exec_time = 0;
66 #endif
67
68 static void enter_mon(void)
69 {
70 // Start up mon in real-mode
71 #if ENABLE_MON
72 char *arg[4] = {"mon", "-m", "-r", NULL};
73 mon(3, arg);
74 #endif
75 }
76
77 // From main_*.cpp
78 extern uintptr SignalStackBase();
79
80 // From rsrc_patches.cpp
81 extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
82
83 // PowerPC EmulOp to exit from emulation looop
84 const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
85
86 // Enable multicore (main/interrupts) cpu emulation?
87 #define MULTICORE_CPU (ASYNC_IRQ ? 1 : 0)
88
89 // Enable Execute68k() safety checks?
90 #define SAFE_EXEC_68K 1
91
92 // Save FP state in Execute68k()?
93 #define SAVE_FP_EXEC_68K 1
94
95 // Interrupts in EMUL_OP mode?
96 #define INTERRUPTS_IN_EMUL_OP_MODE 1
97
98 // Interrupts in native mode?
99 #define INTERRUPTS_IN_NATIVE_MODE 1
100
101 // Pointer to Kernel Data
102 static KernelData * const kernel_data = (KernelData *)KERNEL_DATA_BASE;
103
104 // SIGSEGV handler
105 static sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
106
107 // JIT Compiler enabled?
108 static inline bool enable_jit_p()
109 {
110 return PrefsFindBool("jit");
111 }
112
113
114 /**
115 * PowerPC emulator glue with special 'sheep' opcodes
116 **/
117
118 enum {
119 PPC_I(SHEEP) = PPC_I(MAX),
120 PPC_I(SHEEP_MAX)
121 };
122
123 class sheepshaver_cpu
124 : public powerpc_cpu
125 {
126 void init_decoder();
127 void execute_sheep(uint32 opcode);
128
129 public:
130
131 // Constructor
132 sheepshaver_cpu();
133
134 // CR & XER accessors
135 uint32 get_cr() const { return cr().get(); }
136 void set_cr(uint32 v) { cr().set(v); }
137 uint32 get_xer() const { return xer().get(); }
138 void set_xer(uint32 v) { xer().set(v); }
139
140 // Execute EMUL_OP routine
141 void execute_emul_op(uint32 emul_op);
142
143 // Execute 68k routine
144 void execute_68k(uint32 entry, M68kRegisters *r);
145
146 // Execute ppc routine
147 void execute_ppc(uint32 entry);
148
149 // Execute MacOS/PPC code
150 uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
151
152 // Compile one instruction
153 virtual bool compile1(codegen_context_t & cg_context);
154
155 // Resource manager thunk
156 void get_resource(uint32 old_get_resource);
157
158 // Handle MacOS interrupt
159 void interrupt(uint32 entry);
160 void handle_interrupt();
161
162 // Make sure the SIGSEGV handler can access CPU registers
163 friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
164 };
165
166 // Memory allocator returning areas aligned on 16-byte boundaries
167 void *operator new(size_t size)
168 {
169 void *p;
170
171 #if defined(HAVE_POSIX_MEMALIGN)
172 if (posix_memalign(&p, 16, size) != 0)
173 throw std::bad_alloc();
174 #elif defined(HAVE_MEMALIGN)
175 p = memalign(16, size);
176 #elif defined(HAVE_VALLOC)
177 p = valloc(size); // page-aligned!
178 #else
179 /* XXX: handle padding ourselves */
180 p = malloc(size);
181 #endif
182
183 return p;
184 }
185
186 void operator delete(void *p)
187 {
188 #if defined(HAVE_MEMALIGN) || defined(HAVE_VALLOC)
189 #if defined(__GLIBC__)
190 // this is known to work only with GNU libc
191 free(p);
192 #endif
193 #else
194 free(p);
195 #endif
196 }
197
198 sheepshaver_cpu::sheepshaver_cpu()
199 : powerpc_cpu(enable_jit_p())
200 {
201 init_decoder();
202 }
203
204 void sheepshaver_cpu::init_decoder()
205 {
206 static const instr_info_t sheep_ii_table[] = {
207 { "sheep",
208 (execute_pmf)&sheepshaver_cpu::execute_sheep,
209 NULL,
210 PPC_I(SHEEP),
211 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
212 }
213 };
214
215 const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
216 D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
217
218 for (int i = 0; i < ii_count; i++) {
219 const instr_info_t * ii = &sheep_ii_table[i];
220 init_decoder_entry(ii);
221 }
222 }
223
224 // Forward declaration for native opcode handler
225 static void NativeOp(int selector);
226
227 /* NativeOp instruction format:
228 +------------+--------------------------+--+----------+------------+
229 | 6 | |FN| OP | 2 |
230 +------------+--------------------------+--+----------+------------+
231 0 5 |6 19 20 21 25 26 31
232 */
233
234 typedef bit_field< 20, 20 > FN_field;
235 typedef bit_field< 21, 25 > NATIVE_OP_field;
236 typedef bit_field< 26, 31 > EMUL_OP_field;
237
238 // Execute EMUL_OP routine
239 void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
240 {
241 M68kRegisters r68;
242 WriteMacInt32(XLM_68K_R25, gpr(25));
243 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
244 for (int i = 0; i < 8; i++)
245 r68.d[i] = gpr(8 + i);
246 for (int i = 0; i < 7; i++)
247 r68.a[i] = gpr(16 + i);
248 r68.a[7] = gpr(1);
249 uint32 saved_cr = get_cr() & CR_field<2>::mask();
250 uint32 saved_xer = get_xer();
251 EmulOp(&r68, gpr(24), emul_op);
252 set_cr(saved_cr);
253 set_xer(saved_xer);
254 for (int i = 0; i < 8; i++)
255 gpr(8 + i) = r68.d[i];
256 for (int i = 0; i < 7; i++)
257 gpr(16 + i) = r68.a[i];
258 gpr(1) = r68.a[7];
259 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
260 }
261
262 // Execute SheepShaver instruction
263 void sheepshaver_cpu::execute_sheep(uint32 opcode)
264 {
265 // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
266 assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
267
268 switch (opcode & 0x3f) {
269 case 0: // EMUL_RETURN
270 QuitEmulator();
271 break;
272
273 case 1: // EXEC_RETURN
274 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
275 break;
276
277 case 2: // EXEC_NATIVE
278 NativeOp(NATIVE_OP_field::extract(opcode));
279 if (FN_field::test(opcode))
280 pc() = lr();
281 else
282 pc() += 4;
283 break;
284
285 default: // EMUL_OP
286 execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
287 pc() += 4;
288 break;
289 }
290 }
291
292 // Compile one instruction
293 bool sheepshaver_cpu::compile1(codegen_context_t & cg_context)
294 {
295 #if PPC_ENABLE_JIT
296 const instr_info_t *ii = cg_context.instr_info;
297 if (ii->mnemo != PPC_I(SHEEP))
298 return false;
299
300 bool compiled = false;
301 powerpc_dyngen & dg = cg_context.codegen;
302 uint32 opcode = cg_context.opcode;
303
304 switch (opcode & 0x3f) {
305 case 0: // EMUL_RETURN
306 dg.gen_invoke(QuitEmulator);
307 compiled = true;
308 break;
309
310 case 1: // EXEC_RETURN
311 dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
312 compiled = true;
313 break;
314
315 case 2: { // EXEC_NATIVE
316 uint32 selector = NATIVE_OP_field::extract(opcode);
317 switch (selector) {
318 case NATIVE_PATCH_NAME_REGISTRY:
319 dg.gen_invoke(DoPatchNameRegistry);
320 compiled = true;
321 break;
322 case NATIVE_VIDEO_INSTALL_ACCEL:
323 dg.gen_invoke(VideoInstallAccel);
324 compiled = true;
325 break;
326 case NATIVE_VIDEO_VBL:
327 dg.gen_invoke(VideoVBL);
328 compiled = true;
329 break;
330 case NATIVE_GET_RESOURCE:
331 case NATIVE_GET_1_RESOURCE:
332 case NATIVE_GET_IND_RESOURCE:
333 case NATIVE_GET_1_IND_RESOURCE:
334 case NATIVE_R_GET_RESOURCE: {
335 static const uint32 get_resource_ptr[] = {
336 XLM_GET_RESOURCE,
337 XLM_GET_1_RESOURCE,
338 XLM_GET_IND_RESOURCE,
339 XLM_GET_1_IND_RESOURCE,
340 XLM_R_GET_RESOURCE
341 };
342 uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
343 typedef void (*func_t)(dyngen_cpu_base, uint32);
344 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
345 dg.gen_invoke_CPU_im(func, old_get_resource);
346 compiled = true;
347 break;
348 }
349 case NATIVE_DISABLE_INTERRUPT:
350 dg.gen_invoke(DisableInterrupt);
351 compiled = true;
352 break;
353 case NATIVE_ENABLE_INTERRUPT:
354 dg.gen_invoke(EnableInterrupt);
355 compiled = true;
356 break;
357 case NATIVE_CHECK_LOAD_INVOC:
358 dg.gen_load_T0_GPR(3);
359 dg.gen_load_T1_GPR(4);
360 dg.gen_se_16_32_T1();
361 dg.gen_load_T2_GPR(5);
362 dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
363 compiled = true;
364 break;
365 }
366 if (FN_field::test(opcode)) {
367 if (compiled) {
368 dg.gen_load_A0_LR();
369 dg.gen_set_PC_A0();
370 }
371 cg_context.done_compile = true;
372 }
373 else
374 cg_context.done_compile = false;
375 break;
376 }
377
378 default: { // EMUL_OP
379 typedef void (*func_t)(dyngen_cpu_base, uint32);
380 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
381 dg.gen_invoke_CPU_im(func, EMUL_OP_field::extract(opcode) - 3);
382 cg_context.done_compile = false;
383 compiled = true;
384 break;
385 }
386 }
387 return compiled;
388 #endif
389 return false;
390 }
391
392 // Handle MacOS interrupt
393 void sheepshaver_cpu::interrupt(uint32 entry)
394 {
395 #if EMUL_TIME_STATS
396 interrupt_count++;
397 const clock_t interrupt_start = clock();
398 #endif
399
400 #if !MULTICORE_CPU
401 // Save program counters and branch registers
402 uint32 saved_pc = pc();
403 uint32 saved_lr = lr();
404 uint32 saved_ctr= ctr();
405 uint32 saved_sp = gpr(1);
406 #endif
407
408 // Initialize stack pointer to SheepShaver alternate stack base
409 gpr(1) = SignalStackBase() - 64;
410
411 // Build trampoline to return from interrupt
412 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
413
414 // Prepare registers for nanokernel interrupt routine
415 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
416 kernel_data->v[0x018 >> 2] = htonl(gpr(6));
417
418 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
419 assert(gpr(6) != 0);
420 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
421 WriteMacInt32(gpr(6) + 0x144, gpr(8));
422 WriteMacInt32(gpr(6) + 0x14c, gpr(9));
423 WriteMacInt32(gpr(6) + 0x154, gpr(10));
424 WriteMacInt32(gpr(6) + 0x15c, gpr(11));
425 WriteMacInt32(gpr(6) + 0x164, gpr(12));
426 WriteMacInt32(gpr(6) + 0x16c, gpr(13));
427
428 gpr(1) = KernelDataAddr;
429 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
430 gpr(8) = 0;
431 gpr(10) = trampoline.addr();
432 gpr(12) = trampoline.addr();
433 gpr(13) = get_cr();
434
435 // rlwimi. r7,r7,8,0,0
436 uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
437 record_cr0(result);
438 gpr(7) = result;
439
440 gpr(11) = 0xf072; // MSR (SRR1)
441 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
442
443 // Enter nanokernel
444 execute(entry);
445
446 #if !MULTICORE_CPU
447 // Restore program counters and branch registers
448 pc() = saved_pc;
449 lr() = saved_lr;
450 ctr()= saved_ctr;
451 gpr(1) = saved_sp;
452 #endif
453
454 #if EMUL_TIME_STATS
455 interrupt_time += (clock() - interrupt_start);
456 #endif
457 }
458
459 // Execute 68k routine
460 void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
461 {
462 #if EMUL_TIME_STATS
463 exec68k_count++;
464 const clock_t exec68k_start = clock();
465 #endif
466
467 #if SAFE_EXEC_68K
468 if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
469 printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
470 #endif
471
472 // Save program counters and branch registers
473 uint32 saved_pc = pc();
474 uint32 saved_lr = lr();
475 uint32 saved_ctr= ctr();
476 uint32 saved_cr = get_cr();
477
478 // Create MacOS stack frame
479 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
480 uint32 sp = gpr(1);
481 gpr(1) -= 56;
482 WriteMacInt32(gpr(1), sp);
483
484 // Save PowerPC registers
485 uint32 saved_GPRs[19];
486 memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
487 #if SAVE_FP_EXEC_68K
488 double saved_FPRs[18];
489 memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
490 #endif
491
492 // Setup registers for 68k emulator
493 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
494 for (int i = 0; i < 8; i++) // d[0]..d[7]
495 gpr(8 + i) = r->d[i];
496 for (int i = 0; i < 7; i++) // a[0]..a[6]
497 gpr(16 + i) = r->a[i];
498 gpr(23) = 0;
499 gpr(24) = entry;
500 gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
501 gpr(26) = 0;
502 gpr(28) = 0; // VBR
503 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
504 gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
505 gpr(31) = KernelDataAddr + 0x1000;
506
507 // Push return address (points to EXEC_RETURN opcode) on stack
508 gpr(1) -= 4;
509 WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
510
511 // Rentering 68k emulator
512 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
513
514 // Set r0 to 0 for 68k emulator
515 gpr(0) = 0;
516
517 // Execute 68k opcode
518 uint32 opcode = ReadMacInt16(gpr(24));
519 gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
520 gpr(29) += opcode * 8;
521 execute(gpr(29));
522
523 // Save r25 (contains current 68k interrupt level)
524 WriteMacInt32(XLM_68K_R25, gpr(25));
525
526 // Reentering EMUL_OP mode
527 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
528
529 // Save 68k registers
530 for (int i = 0; i < 8; i++) // d[0]..d[7]
531 r->d[i] = gpr(8 + i);
532 for (int i = 0; i < 7; i++) // a[0]..a[6]
533 r->a[i] = gpr(16 + i);
534
535 // Restore PowerPC registers
536 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
537 #if SAVE_FP_EXEC_68K
538 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
539 #endif
540
541 // Cleanup stack
542 gpr(1) += 56;
543
544 // Restore program counters and branch registers
545 pc() = saved_pc;
546 lr() = saved_lr;
547 ctr()= saved_ctr;
548 set_cr(saved_cr);
549
550 #if EMUL_TIME_STATS
551 exec68k_time += (clock() - exec68k_start);
552 #endif
553 }
554
555 // Call MacOS PPC code
556 uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
557 {
558 #if EMUL_TIME_STATS
559 macos_exec_count++;
560 const clock_t macos_exec_start = clock();
561 #endif
562
563 // Save program counters and branch registers
564 uint32 saved_pc = pc();
565 uint32 saved_lr = lr();
566 uint32 saved_ctr= ctr();
567
568 // Build trampoline with EXEC_RETURN
569 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
570 lr() = trampoline.addr();
571
572 gpr(1) -= 64; // Create stack frame
573 uint32 proc = ReadMacInt32(tvect); // Get routine address
574 uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
575
576 // Save PowerPC registers
577 uint32 regs[8];
578 regs[0] = gpr(2);
579 for (int i = 0; i < nargs; i++)
580 regs[i + 1] = gpr(i + 3);
581
582 // Prepare and call MacOS routine
583 gpr(2) = toc;
584 for (int i = 0; i < nargs; i++)
585 gpr(i + 3) = args[i];
586 execute(proc);
587 uint32 retval = gpr(3);
588
589 // Restore PowerPC registers
590 for (int i = 0; i <= nargs; i++)
591 gpr(i + 2) = regs[i];
592
593 // Cleanup stack
594 gpr(1) += 64;
595
596 // Restore program counters and branch registers
597 pc() = saved_pc;
598 lr() = saved_lr;
599 ctr()= saved_ctr;
600
601 #if EMUL_TIME_STATS
602 macos_exec_time += (clock() - macos_exec_start);
603 #endif
604
605 return retval;
606 }
607
608 // Execute ppc routine
609 inline void sheepshaver_cpu::execute_ppc(uint32 entry)
610 {
611 // Save branch registers
612 uint32 saved_lr = lr();
613
614 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
615 WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
616 lr() = trampoline.addr();
617
618 execute(entry);
619
620 // Restore branch registers
621 lr() = saved_lr;
622 }
623
624 // Resource Manager thunk
625 inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
626 {
627 uint32 type = gpr(3);
628 int16 id = gpr(4);
629
630 // Create stack frame
631 gpr(1) -= 56;
632
633 // Call old routine
634 execute_ppc(old_get_resource);
635
636 // Call CheckLoad()
637 uint32 handle = gpr(3);
638 check_load_invoc(type, id, handle);
639 gpr(3) = handle;
640
641 // Cleanup stack
642 gpr(1) += 56;
643 }
644
645
646 /**
647 * SheepShaver CPU engine interface
648 **/
649
650 static sheepshaver_cpu *main_cpu = NULL; // CPU emulator to handle usual control flow
651 static sheepshaver_cpu *interrupt_cpu = NULL; // CPU emulator to handle interrupts
652 static sheepshaver_cpu *current_cpu = NULL; // Current CPU emulator context
653
654 void FlushCodeCache(uintptr start, uintptr end)
655 {
656 D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
657 main_cpu->invalidate_cache_range(start, end);
658 #if MULTICORE_CPU
659 interrupt_cpu->invalidate_cache_range(start, end);
660 #endif
661 }
662
663 static inline void cpu_push(sheepshaver_cpu *new_cpu)
664 {
665 #if MULTICORE_CPU
666 current_cpu = new_cpu;
667 #endif
668 }
669
670 static inline void cpu_pop()
671 {
672 #if MULTICORE_CPU
673 current_cpu = main_cpu;
674 #endif
675 }
676
677 // Dump PPC registers
678 static void dump_registers(void)
679 {
680 current_cpu->dump_registers();
681 }
682
683 // Dump log
684 static void dump_log(void)
685 {
686 current_cpu->dump_log();
687 }
688
689 /*
690 * Initialize CPU emulation
691 */
692
693 static sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
694 {
695 #if ENABLE_VOSF
696 // Handle screen fault
697 extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
698 if (Screen_fault_handler(fault_address, fault_instruction))
699 return SIGSEGV_RETURN_SUCCESS;
700 #endif
701
702 const uintptr addr = (uintptr)fault_address;
703 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
704 // Ignore writes to ROM
705 if ((addr - ROM_BASE) < ROM_SIZE)
706 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
707
708 // Get program counter of target CPU
709 sheepshaver_cpu * const cpu = current_cpu;
710 const uint32 pc = cpu->pc();
711
712 // Fault in Mac ROM or RAM?
713 bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize));
714 if (mac_fault) {
715
716 // "VM settings" during MacOS 8 installation
717 if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
718 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
719
720 // MacOS 8.5 installation
721 else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
722 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
723
724 // MacOS 8 serial drivers on startup
725 else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
726 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
727
728 // MacOS 8.1 serial drivers on startup
729 else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
730 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
731 else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
732 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
733
734 // Ignore writes to the zero page
735 else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
736 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
737
738 // Ignore all other faults, if requested
739 if (PrefsFindBool("ignoresegv"))
740 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
741 }
742 #else
743 #error "FIXME: You don't have the capability to skip instruction within signal handlers"
744 #endif
745
746 printf("SIGSEGV\n");
747 printf(" pc %p\n", fault_instruction);
748 printf(" ea %p\n", fault_address);
749 printf(" cpu %s\n", current_cpu == main_cpu ? "main" : "interrupts");
750 dump_registers();
751 current_cpu->dump_log();
752 enter_mon();
753 QuitEmulator();
754
755 return SIGSEGV_RETURN_FAILURE;
756 }
757
758 void init_emul_ppc(void)
759 {
760 // Initialize main CPU emulator
761 main_cpu = new sheepshaver_cpu();
762 main_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
763 main_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
764 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
765
766 #if MULTICORE_CPU
767 // Initialize alternate CPU emulator to handle interrupts
768 interrupt_cpu = new sheepshaver_cpu();
769 #endif
770
771 // Install the handler for SIGSEGV
772 sigsegv_install_handler(sigsegv_handler);
773
774 #if ENABLE_MON
775 // Install "regs" command in cxmon
776 mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
777 mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
778 #endif
779
780 #if EMUL_TIME_STATS
781 emul_start_time = clock();
782 #endif
783 }
784
785 /*
786 * Deinitialize emulation
787 */
788
789 void exit_emul_ppc(void)
790 {
791 #if EMUL_TIME_STATS
792 clock_t emul_end_time = clock();
793
794 printf("### Statistics for SheepShaver emulation parts\n");
795 const clock_t emul_time = emul_end_time - emul_start_time;
796 printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
797 printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
798 (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
799
800 #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
801 printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
802 printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
803 double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
804 100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
805 } while (0)
806
807 PRINT_STATS("Execute68k[Trap] execution", exec68k);
808 PRINT_STATS("NativeOp execution", native_exec);
809 PRINT_STATS("MacOS routine execution", macos_exec);
810
811 #undef PRINT_STATS
812 printf("\n");
813 #endif
814
815 delete main_cpu;
816 #if MULTICORE_CPU
817 delete interrupt_cpu;
818 #endif
819 }
820
821 /*
822 * Emulation loop
823 */
824
825 void emul_ppc(uint32 entry)
826 {
827 current_cpu = main_cpu;
828 #if 0
829 current_cpu->start_log();
830 #endif
831 // start emulation loop and enable code translation or caching
832 current_cpu->execute(entry);
833 }
834
835 /*
836 * Handle PowerPC interrupt
837 */
838
839 #if ASYNC_IRQ
840 void HandleInterrupt(void)
841 {
842 main_cpu->handle_interrupt();
843 }
844 #else
845 void TriggerInterrupt(void)
846 {
847 #if 0
848 WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
849 #else
850 // Trigger interrupt to main cpu only
851 if (main_cpu)
852 main_cpu->trigger_interrupt();
853 #endif
854 }
855 #endif
856
857 void sheepshaver_cpu::handle_interrupt(void)
858 {
859 // Do nothing if interrupts are disabled
860 if (*(int32 *)XLM_IRQ_NEST > 0)
861 return;
862
863 // Do nothing if there is no interrupt pending
864 if (InterruptFlags == 0)
865 return;
866
867 // Disable MacOS stack sniffer
868 WriteMacInt32(0x110, 0);
869
870 // Interrupt action depends on current run mode
871 switch (ReadMacInt32(XLM_RUN_MODE)) {
872 case MODE_68K:
873 // 68k emulator active, trigger 68k interrupt level 1
874 assert(current_cpu == main_cpu);
875 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
876 set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
877 break;
878
879 #if INTERRUPTS_IN_NATIVE_MODE
880 case MODE_NATIVE:
881 // 68k emulator inactive, in nanokernel?
882 assert(current_cpu == main_cpu);
883 if (gpr(1) != KernelDataAddr) {
884 // Prepare for 68k interrupt level 1
885 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
886 WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
887 ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
888 | tswap32(kernel_data->v[0x674 >> 2]));
889
890 // Execute nanokernel interrupt routine (this will activate the 68k emulator)
891 DisableInterrupt();
892 cpu_push(interrupt_cpu);
893 if (ROMType == ROMTYPE_NEWWORLD)
894 current_cpu->interrupt(ROM_BASE + 0x312b1c);
895 else
896 current_cpu->interrupt(ROM_BASE + 0x312a3c);
897 cpu_pop();
898 }
899 break;
900 #endif
901
902 #if INTERRUPTS_IN_EMUL_OP_MODE
903 case MODE_EMUL_OP:
904 // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
905 if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
906 #if 1
907 // Execute full 68k interrupt routine
908 M68kRegisters r;
909 uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
910 WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
911 static const uint8 proc[] = {
912 0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
913 0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
914 0x40, 0xe7, // move sr,-(sp) (saved SR)
915 0x20, 0x78, 0x00, 0x064, // move.l $64,a0
916 0x4e, 0xd0, // jmp (a0)
917 M68K_RTS >> 8, M68K_RTS & 0xff // @1
918 };
919 Execute68k((uint32)proc, &r);
920 WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
921 #else
922 // Only update cursor
923 if (HasMacStarted()) {
924 if (InterruptFlags & INTFLAG_VIA) {
925 ClearInterruptFlag(INTFLAG_VIA);
926 ADBInterrupt();
927 ExecuteNative(NATIVE_VIDEO_VBL);
928 }
929 }
930 #endif
931 }
932 break;
933 #endif
934 }
935 }
936
937 static void get_resource(void);
938 static void get_1_resource(void);
939 static void get_ind_resource(void);
940 static void get_1_ind_resource(void);
941 static void r_get_resource(void);
942
943 #define GPR(REG) current_cpu->gpr(REG)
944
945 static void NativeOp(int selector)
946 {
947 #if EMUL_TIME_STATS
948 native_exec_count++;
949 const clock_t native_exec_start = clock();
950 #endif
951
952 switch (selector) {
953 case NATIVE_PATCH_NAME_REGISTRY:
954 DoPatchNameRegistry();
955 break;
956 case NATIVE_VIDEO_INSTALL_ACCEL:
957 VideoInstallAccel();
958 break;
959 case NATIVE_VIDEO_VBL:
960 VideoVBL();
961 break;
962 case NATIVE_VIDEO_DO_DRIVER_IO:
963 GPR(3) = (int32)(int16)VideoDoDriverIO((void *)GPR(3), (void *)GPR(4),
964 (void *)GPR(5), GPR(6), GPR(7));
965 break;
966 #ifdef WORDS_BIGENDIAN
967 case NATIVE_ETHER_IRQ:
968 EtherIRQ();
969 break;
970 case NATIVE_ETHER_INIT:
971 GPR(3) = InitStreamModule((void *)GPR(3));
972 break;
973 case NATIVE_ETHER_TERM:
974 TerminateStreamModule();
975 break;
976 case NATIVE_ETHER_OPEN:
977 GPR(3) = ether_open((queue_t *)GPR(3), (void *)GPR(4), GPR(5), GPR(6), (void*)GPR(7));
978 break;
979 case NATIVE_ETHER_CLOSE:
980 GPR(3) = ether_close((queue_t *)GPR(3), GPR(4), (void *)GPR(5));
981 break;
982 case NATIVE_ETHER_WPUT:
983 GPR(3) = ether_wput((queue_t *)GPR(3), (mblk_t *)GPR(4));
984 break;
985 case NATIVE_ETHER_RSRV:
986 GPR(3) = ether_rsrv((queue_t *)GPR(3));
987 break;
988 #else
989 case NATIVE_ETHER_INIT:
990 // FIXME: needs more complicated thunks
991 GPR(3) = false;
992 break;
993 #endif
994 case NATIVE_SYNC_HOOK:
995 GPR(3) = NQD_sync_hook(GPR(3));
996 break;
997 case NATIVE_BITBLT_HOOK:
998 GPR(3) = NQD_bitblt_hook(GPR(3));
999 break;
1000 case NATIVE_BITBLT:
1001 NQD_bitblt(GPR(3));
1002 break;
1003 case NATIVE_FILLRECT_HOOK:
1004 GPR(3) = NQD_fillrect_hook(GPR(3));
1005 break;
1006 case NATIVE_INVRECT:
1007 NQD_invrect(GPR(3));
1008 break;
1009 case NATIVE_FILLRECT:
1010 NQD_fillrect(GPR(3));
1011 break;
1012 case NATIVE_SERIAL_NOTHING:
1013 case NATIVE_SERIAL_OPEN:
1014 case NATIVE_SERIAL_PRIME_IN:
1015 case NATIVE_SERIAL_PRIME_OUT:
1016 case NATIVE_SERIAL_CONTROL:
1017 case NATIVE_SERIAL_STATUS:
1018 case NATIVE_SERIAL_CLOSE: {
1019 typedef int16 (*SerialCallback)(uint32, uint32);
1020 static const SerialCallback serial_callbacks[] = {
1021 SerialNothing,
1022 SerialOpen,
1023 SerialPrimeIn,
1024 SerialPrimeOut,
1025 SerialControl,
1026 SerialStatus,
1027 SerialClose
1028 };
1029 GPR(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](GPR(3), GPR(4));
1030 break;
1031 }
1032 case NATIVE_GET_RESOURCE:
1033 case NATIVE_GET_1_RESOURCE:
1034 case NATIVE_GET_IND_RESOURCE:
1035 case NATIVE_GET_1_IND_RESOURCE:
1036 case NATIVE_R_GET_RESOURCE: {
1037 typedef void (*GetResourceCallback)(void);
1038 static const GetResourceCallback get_resource_callbacks[] = {
1039 get_resource,
1040 get_1_resource,
1041 get_ind_resource,
1042 get_1_ind_resource,
1043 r_get_resource
1044 };
1045 get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
1046 break;
1047 }
1048 case NATIVE_DISABLE_INTERRUPT:
1049 DisableInterrupt();
1050 break;
1051 case NATIVE_ENABLE_INTERRUPT:
1052 EnableInterrupt();
1053 break;
1054 case NATIVE_MAKE_EXECUTABLE:
1055 MakeExecutable(0, (void *)GPR(4), GPR(5));
1056 break;
1057 case NATIVE_CHECK_LOAD_INVOC:
1058 check_load_invoc(GPR(3), GPR(4), GPR(5));
1059 break;
1060 default:
1061 printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
1062 QuitEmulator();
1063 break;
1064 }
1065
1066 #if EMUL_TIME_STATS
1067 native_exec_time += (clock() - native_exec_start);
1068 #endif
1069 }
1070
1071 /*
1072 * Execute 68k subroutine (must be ended with EXEC_RETURN)
1073 * This must only be called by the emul_thread when in EMUL_OP mode
1074 * r->a[7] is unused, the routine runs on the caller's stack
1075 */
1076
1077 void Execute68k(uint32 pc, M68kRegisters *r)
1078 {
1079 current_cpu->execute_68k(pc, r);
1080 }
1081
1082 /*
1083 * Execute 68k A-Trap from EMUL_OP routine
1084 * r->a[7] is unused, the routine runs on the caller's stack
1085 */
1086
1087 void Execute68kTrap(uint16 trap, M68kRegisters *r)
1088 {
1089 SheepVar proc_var(4);
1090 uint32 proc = proc_var.addr();
1091 WriteMacInt16(proc, trap);
1092 WriteMacInt16(proc + 2, M68K_RTS);
1093 Execute68k(proc, r);
1094 }
1095
1096 /*
1097 * Call MacOS PPC code
1098 */
1099
1100 uint32 call_macos(uint32 tvect)
1101 {
1102 return current_cpu->execute_macos_code(tvect, 0, NULL);
1103 }
1104
1105 uint32 call_macos1(uint32 tvect, uint32 arg1)
1106 {
1107 const uint32 args[] = { arg1 };
1108 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1109 }
1110
1111 uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1112 {
1113 const uint32 args[] = { arg1, arg2 };
1114 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1115 }
1116
1117 uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1118 {
1119 const uint32 args[] = { arg1, arg2, arg3 };
1120 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1121 }
1122
1123 uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1124 {
1125 const uint32 args[] = { arg1, arg2, arg3, arg4 };
1126 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1127 }
1128
1129 uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1130 {
1131 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1132 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1133 }
1134
1135 uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1136 {
1137 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1138 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1139 }
1140
1141 uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1142 {
1143 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1144 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1145 }
1146
1147 /*
1148 * Resource Manager thunks
1149 */
1150
1151 void get_resource(void)
1152 {
1153 current_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1154 }
1155
1156 void get_1_resource(void)
1157 {
1158 current_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1159 }
1160
1161 void get_ind_resource(void)
1162 {
1163 current_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1164 }
1165
1166 void get_1_ind_resource(void)
1167 {
1168 current_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1169 }
1170
1171 void r_get_resource(void)
1172 {
1173 current_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1174 }