ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.55
Committed: 2004-12-18T18:40:04Z (19 years, 5 months ago) by gbeauche
Branch: MAIN
Changes since 1.54: +0 -7 lines
Log Message:
ethernet seems to work with sheepnet, even on kernel 2.6/x86_64!

File Contents

# Content
1 /*
2 * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3 *
4 * SheepShaver (C) 1997-2004 Christian Bauer and Marc Hellwig
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 #include "sysdeps.h"
22 #include "cpu_emulation.h"
23 #include "main.h"
24 #include "prefs.h"
25 #include "xlowmem.h"
26 #include "emul_op.h"
27 #include "rom_patches.h"
28 #include "macos_util.h"
29 #include "block-alloc.hpp"
30 #include "sigsegv.h"
31 #include "cpu/ppc/ppc-cpu.hpp"
32 #include "cpu/ppc/ppc-operations.hpp"
33 #include "cpu/ppc/ppc-instructions.hpp"
34 #include "thunks.h"
35
36 // Used for NativeOp trampolines
37 #include "video.h"
38 #include "name_registry.h"
39 #include "serial.h"
40 #include "ether.h"
41 #include "timer.h"
42
43 #include <stdio.h>
44 #include <stdlib.h>
45 #ifdef HAVE_MALLOC_H
46 #include <malloc.h>
47 #endif
48
49 #ifdef USE_SDL_VIDEO
50 #include <SDL_events.h>
51 #endif
52
53 #if ENABLE_MON
54 #include "mon.h"
55 #include "mon_disass.h"
56 #endif
57
58 #define DEBUG 0
59 #include "debug.h"
60
61 // Emulation time statistics
62 #ifndef EMUL_TIME_STATS
63 #define EMUL_TIME_STATS 0
64 #endif
65
66 #if EMUL_TIME_STATS
67 static clock_t emul_start_time;
68 static uint32 interrupt_count = 0, ppc_interrupt_count = 0;
69 static clock_t interrupt_time = 0;
70 static uint32 exec68k_count = 0;
71 static clock_t exec68k_time = 0;
72 static uint32 native_exec_count = 0;
73 static clock_t native_exec_time = 0;
74 static uint32 macos_exec_count = 0;
75 static clock_t macos_exec_time = 0;
76 #endif
77
78 static void enter_mon(void)
79 {
80 // Start up mon in real-mode
81 #if ENABLE_MON
82 char *arg[4] = {"mon", "-m", "-r", NULL};
83 mon(3, arg);
84 #endif
85 }
86
87 // From main_*.cpp
88 extern uintptr SignalStackBase();
89
90 // From rsrc_patches.cpp
91 extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
92
93 // PowerPC EmulOp to exit from emulation looop
94 const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
95
96 // Enable interrupt routine safety checks?
97 #define SAFE_INTERRUPT_PPC 1
98
99 // Enable Execute68k() safety checks?
100 #define SAFE_EXEC_68K 1
101
102 // Save FP state in Execute68k()?
103 #define SAVE_FP_EXEC_68K 1
104
105 // Interrupts in EMUL_OP mode?
106 #define INTERRUPTS_IN_EMUL_OP_MODE 1
107
108 // Interrupts in native mode?
109 #define INTERRUPTS_IN_NATIVE_MODE 1
110
111 // Pointer to Kernel Data
112 static KernelData * kernel_data;
113
114 // SIGSEGV handler
115 sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
116
117 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
118 // Special trampolines for EmulOp and NativeOp
119 static uint8 *emul_op_trampoline;
120 static uint8 *native_op_trampoline;
121 #endif
122
123 // JIT Compiler enabled?
124 static inline bool enable_jit_p()
125 {
126 return PrefsFindBool("jit");
127 }
128
129
130 /**
131 * PowerPC emulator glue with special 'sheep' opcodes
132 **/
133
134 enum {
135 PPC_I(SHEEP) = PPC_I(MAX),
136 PPC_I(SHEEP_MAX)
137 };
138
139 class sheepshaver_cpu
140 : public powerpc_cpu
141 {
142 void init_decoder();
143 void execute_sheep(uint32 opcode);
144
145 // CPU context to preserve on interrupt
146 class interrupt_context {
147 uint32 gpr[32];
148 uint32 pc;
149 uint32 lr;
150 uint32 ctr;
151 uint32 cr;
152 uint32 xer;
153 sheepshaver_cpu *cpu;
154 const char *where;
155 public:
156 interrupt_context(sheepshaver_cpu *_cpu, const char *_where);
157 ~interrupt_context();
158 };
159
160 public:
161
162 // Constructor
163 sheepshaver_cpu();
164
165 // CR & XER accessors
166 uint32 get_cr() const { return cr().get(); }
167 void set_cr(uint32 v) { cr().set(v); }
168 uint32 get_xer() const { return xer().get(); }
169 void set_xer(uint32 v) { xer().set(v); }
170
171 // Execute NATIVE_OP routine
172 void execute_native_op(uint32 native_op);
173
174 // Execute EMUL_OP routine
175 void execute_emul_op(uint32 emul_op);
176
177 // Execute 68k routine
178 void execute_68k(uint32 entry, M68kRegisters *r);
179
180 // Execute ppc routine
181 void execute_ppc(uint32 entry);
182
183 // Execute MacOS/PPC code
184 uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
185
186 #if PPC_ENABLE_JIT
187 // Compile one instruction
188 virtual int compile1(codegen_context_t & cg_context);
189 #endif
190 // Resource manager thunk
191 void get_resource(uint32 old_get_resource);
192
193 // Handle MacOS interrupt
194 void interrupt(uint32 entry);
195 void handle_interrupt();
196
197 // Make sure the SIGSEGV handler can access CPU registers
198 friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
199
200 // Memory allocator returning areas aligned on 16-byte boundaries
201 void *operator new(size_t size);
202 void operator delete(void *p);
203 };
204
205 // Memory allocator returning areas aligned on 16-byte boundaries
206 void *sheepshaver_cpu::operator new(size_t size)
207 {
208 void *p;
209
210 #if defined(HAVE_POSIX_MEMALIGN)
211 if (posix_memalign(&p, 16, size) != 0)
212 throw std::bad_alloc();
213 #elif defined(HAVE_MEMALIGN)
214 p = memalign(16, size);
215 #elif defined(HAVE_VALLOC)
216 p = valloc(size); // page-aligned!
217 #else
218 /* XXX: handle padding ourselves */
219 p = malloc(size);
220 #endif
221
222 return p;
223 }
224
225 void sheepshaver_cpu::operator delete(void *p)
226 {
227 #if defined(HAVE_MEMALIGN) || defined(HAVE_VALLOC)
228 #if defined(__GLIBC__)
229 // this is known to work only with GNU libc
230 free(p);
231 #endif
232 #else
233 free(p);
234 #endif
235 }
236
237 sheepshaver_cpu::sheepshaver_cpu()
238 : powerpc_cpu(enable_jit_p())
239 {
240 init_decoder();
241 }
242
243 void sheepshaver_cpu::init_decoder()
244 {
245 static const instr_info_t sheep_ii_table[] = {
246 { "sheep",
247 (execute_pmf)&sheepshaver_cpu::execute_sheep,
248 NULL,
249 PPC_I(SHEEP),
250 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
251 }
252 };
253
254 const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
255 D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
256
257 for (int i = 0; i < ii_count; i++) {
258 const instr_info_t * ii = &sheep_ii_table[i];
259 init_decoder_entry(ii);
260 }
261 }
262
263 /* NativeOp instruction format:
264 +------------+-------------------------+--+-----------+------------+
265 | 6 | |FN| OP | 2 |
266 +------------+-------------------------+--+-----------+------------+
267 0 5 |6 18 19 20 25 26 31
268 */
269
270 typedef bit_field< 19, 19 > FN_field;
271 typedef bit_field< 20, 25 > NATIVE_OP_field;
272 typedef bit_field< 26, 31 > EMUL_OP_field;
273
274 // Execute EMUL_OP routine
275 void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
276 {
277 M68kRegisters r68;
278 WriteMacInt32(XLM_68K_R25, gpr(25));
279 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
280 for (int i = 0; i < 8; i++)
281 r68.d[i] = gpr(8 + i);
282 for (int i = 0; i < 7; i++)
283 r68.a[i] = gpr(16 + i);
284 r68.a[7] = gpr(1);
285 uint32 saved_cr = get_cr() & CR_field<2>::mask();
286 uint32 saved_xer = get_xer();
287 EmulOp(&r68, gpr(24), emul_op);
288 set_cr(saved_cr);
289 set_xer(saved_xer);
290 for (int i = 0; i < 8; i++)
291 gpr(8 + i) = r68.d[i];
292 for (int i = 0; i < 7; i++)
293 gpr(16 + i) = r68.a[i];
294 gpr(1) = r68.a[7];
295 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
296 }
297
298 // Execute SheepShaver instruction
299 void sheepshaver_cpu::execute_sheep(uint32 opcode)
300 {
301 // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
302 assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
303
304 switch (opcode & 0x3f) {
305 case 0: // EMUL_RETURN
306 QuitEmulator();
307 break;
308
309 case 1: // EXEC_RETURN
310 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
311 break;
312
313 case 2: // EXEC_NATIVE
314 execute_native_op(NATIVE_OP_field::extract(opcode));
315 if (FN_field::test(opcode))
316 pc() = lr();
317 else
318 pc() += 4;
319 break;
320
321 default: // EMUL_OP
322 execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
323 pc() += 4;
324 break;
325 }
326 }
327
328 // Compile one instruction
329 #if PPC_ENABLE_JIT
330 int sheepshaver_cpu::compile1(codegen_context_t & cg_context)
331 {
332 const instr_info_t *ii = cg_context.instr_info;
333 if (ii->mnemo != PPC_I(SHEEP))
334 return COMPILE_FAILURE;
335
336 int status = COMPILE_FAILURE;
337 powerpc_dyngen & dg = cg_context.codegen;
338 uint32 opcode = cg_context.opcode;
339
340 switch (opcode & 0x3f) {
341 case 0: // EMUL_RETURN
342 dg.gen_invoke(QuitEmulator);
343 status = COMPILE_CODE_OK;
344 break;
345
346 case 1: // EXEC_RETURN
347 dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
348 // Don't check for pending interrupts, we do know we have to
349 // get out of this block ASAP
350 dg.gen_exec_return();
351 status = COMPILE_EPILOGUE_OK;
352 break;
353
354 case 2: { // EXEC_NATIVE
355 uint32 selector = NATIVE_OP_field::extract(opcode);
356 switch (selector) {
357 #if !PPC_REENTRANT_JIT
358 // Filter out functions that may invoke Execute68k() or
359 // CallMacOS(), this would break reentrancy as they could
360 // invalidate the translation cache and even overwrite
361 // continuation code when we are done with them.
362 case NATIVE_PATCH_NAME_REGISTRY:
363 dg.gen_invoke(DoPatchNameRegistry);
364 status = COMPILE_CODE_OK;
365 break;
366 case NATIVE_VIDEO_INSTALL_ACCEL:
367 dg.gen_invoke(VideoInstallAccel);
368 status = COMPILE_CODE_OK;
369 break;
370 case NATIVE_VIDEO_VBL:
371 dg.gen_invoke(VideoVBL);
372 status = COMPILE_CODE_OK;
373 break;
374 case NATIVE_GET_RESOURCE:
375 case NATIVE_GET_1_RESOURCE:
376 case NATIVE_GET_IND_RESOURCE:
377 case NATIVE_GET_1_IND_RESOURCE:
378 case NATIVE_R_GET_RESOURCE: {
379 static const uint32 get_resource_ptr[] = {
380 XLM_GET_RESOURCE,
381 XLM_GET_1_RESOURCE,
382 XLM_GET_IND_RESOURCE,
383 XLM_GET_1_IND_RESOURCE,
384 XLM_R_GET_RESOURCE
385 };
386 uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
387 typedef void (*func_t)(dyngen_cpu_base, uint32);
388 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
389 dg.gen_invoke_CPU_im(func, old_get_resource);
390 status = COMPILE_CODE_OK;
391 break;
392 }
393 case NATIVE_CHECK_LOAD_INVOC:
394 dg.gen_load_T0_GPR(3);
395 dg.gen_load_T1_GPR(4);
396 dg.gen_se_16_32_T1();
397 dg.gen_load_T2_GPR(5);
398 dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
399 status = COMPILE_CODE_OK;
400 break;
401 #endif
402 case NATIVE_BITBLT:
403 dg.gen_load_T0_GPR(3);
404 dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt);
405 status = COMPILE_CODE_OK;
406 break;
407 case NATIVE_INVRECT:
408 dg.gen_load_T0_GPR(3);
409 dg.gen_invoke_T0((void (*)(uint32))NQD_invrect);
410 status = COMPILE_CODE_OK;
411 break;
412 case NATIVE_FILLRECT:
413 dg.gen_load_T0_GPR(3);
414 dg.gen_invoke_T0((void (*)(uint32))NQD_fillrect);
415 status = COMPILE_CODE_OK;
416 break;
417 }
418 // Could we fully translate this NativeOp?
419 if (status == COMPILE_CODE_OK) {
420 if (!FN_field::test(opcode))
421 cg_context.done_compile = false;
422 else {
423 dg.gen_load_A0_LR();
424 dg.gen_set_PC_A0();
425 cg_context.done_compile = true;
426 }
427 break;
428 }
429 #if PPC_REENTRANT_JIT
430 // Try to execute NativeOp trampoline
431 if (!FN_field::test(opcode))
432 dg.gen_set_PC_im(cg_context.pc + 4);
433 else {
434 dg.gen_load_A0_LR();
435 dg.gen_set_PC_A0();
436 }
437 dg.gen_mov_32_T0_im(selector);
438 dg.gen_jmp(native_op_trampoline);
439 cg_context.done_compile = true;
440 status = COMPILE_EPILOGUE_OK;
441 break;
442 #endif
443 // Invoke NativeOp handler
444 if (!FN_field::test(opcode)) {
445 typedef void (*func_t)(dyngen_cpu_base, uint32);
446 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
447 dg.gen_invoke_CPU_im(func, selector);
448 cg_context.done_compile = false;
449 status = COMPILE_CODE_OK;
450 }
451 // Otherwise, let it generate a call to execute_sheep() which
452 // will cause necessary updates to the program counter
453 break;
454 }
455
456 default: { // EMUL_OP
457 uint32 emul_op = EMUL_OP_field::extract(opcode) - 3;
458 #if PPC_REENTRANT_JIT
459 // Try to execute EmulOp trampoline
460 dg.gen_set_PC_im(cg_context.pc + 4);
461 dg.gen_mov_32_T0_im(emul_op);
462 dg.gen_jmp(emul_op_trampoline);
463 cg_context.done_compile = true;
464 status = COMPILE_EPILOGUE_OK;
465 break;
466 #endif
467 // Invoke EmulOp handler
468 typedef void (*func_t)(dyngen_cpu_base, uint32);
469 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
470 dg.gen_invoke_CPU_im(func, emul_op);
471 cg_context.done_compile = false;
472 status = COMPILE_CODE_OK;
473 break;
474 }
475 }
476 return status;
477 }
478 #endif
479
480 // CPU context to preserve on interrupt
481 sheepshaver_cpu::interrupt_context::interrupt_context(sheepshaver_cpu *_cpu, const char *_where)
482 {
483 #if SAFE_INTERRUPT_PPC >= 2
484 cpu = _cpu;
485 where = _where;
486
487 // Save interrupt context
488 memcpy(&gpr[0], &cpu->gpr(0), sizeof(gpr));
489 pc = cpu->pc();
490 lr = cpu->lr();
491 ctr = cpu->ctr();
492 cr = cpu->get_cr();
493 xer = cpu->get_xer();
494 #endif
495 }
496
497 sheepshaver_cpu::interrupt_context::~interrupt_context()
498 {
499 #if SAFE_INTERRUPT_PPC >= 2
500 // Check whether CPU context was preserved by interrupt
501 if (memcmp(&gpr[0], &cpu->gpr(0), sizeof(gpr)) != 0) {
502 printf("FATAL: %s: interrupt clobbers registers\n", where);
503 for (int i = 0; i < 32; i++)
504 if (gpr[i] != cpu->gpr(i))
505 printf(" r%d: %08x -> %08x\n", i, gpr[i], cpu->gpr(i));
506 }
507 if (pc != cpu->pc())
508 printf("FATAL: %s: interrupt clobbers PC\n", where);
509 if (lr != cpu->lr())
510 printf("FATAL: %s: interrupt clobbers LR\n", where);
511 if (ctr != cpu->ctr())
512 printf("FATAL: %s: interrupt clobbers CTR\n", where);
513 if (cr != cpu->get_cr())
514 printf("FATAL: %s: interrupt clobbers CR\n", where);
515 if (xer != cpu->get_xer())
516 printf("FATAL: %s: interrupt clobbers XER\n", where);
517 #endif
518 }
519
520 // Handle MacOS interrupt
521 void sheepshaver_cpu::interrupt(uint32 entry)
522 {
523 #if EMUL_TIME_STATS
524 ppc_interrupt_count++;
525 const clock_t interrupt_start = clock();
526 #endif
527
528 #if SAFE_INTERRUPT_PPC
529 static int depth = 0;
530 if (depth != 0)
531 printf("FATAL: sheepshaver_cpu::interrupt() called more than once: %d\n", depth);
532 depth++;
533 #endif
534
535 // Save program counters and branch registers
536 uint32 saved_pc = pc();
537 uint32 saved_lr = lr();
538 uint32 saved_ctr= ctr();
539 uint32 saved_sp = gpr(1);
540
541 // Initialize stack pointer to SheepShaver alternate stack base
542 gpr(1) = SignalStackBase() - 64;
543
544 // Build trampoline to return from interrupt
545 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
546
547 // Prepare registers for nanokernel interrupt routine
548 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
549 kernel_data->v[0x018 >> 2] = htonl(gpr(6));
550
551 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
552 assert(gpr(6) != 0);
553 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
554 WriteMacInt32(gpr(6) + 0x144, gpr(8));
555 WriteMacInt32(gpr(6) + 0x14c, gpr(9));
556 WriteMacInt32(gpr(6) + 0x154, gpr(10));
557 WriteMacInt32(gpr(6) + 0x15c, gpr(11));
558 WriteMacInt32(gpr(6) + 0x164, gpr(12));
559 WriteMacInt32(gpr(6) + 0x16c, gpr(13));
560
561 gpr(1) = KernelDataAddr;
562 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
563 gpr(8) = 0;
564 gpr(10) = trampoline.addr();
565 gpr(12) = trampoline.addr();
566 gpr(13) = get_cr();
567
568 // rlwimi. r7,r7,8,0,0
569 uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
570 record_cr0(result);
571 gpr(7) = result;
572
573 gpr(11) = 0xf072; // MSR (SRR1)
574 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
575
576 // Enter nanokernel
577 execute(entry);
578
579 // Restore program counters and branch registers
580 pc() = saved_pc;
581 lr() = saved_lr;
582 ctr()= saved_ctr;
583 gpr(1) = saved_sp;
584
585 #if EMUL_TIME_STATS
586 interrupt_time += (clock() - interrupt_start);
587 #endif
588
589 #if SAFE_INTERRUPT_PPC
590 depth--;
591 #endif
592 }
593
594 // Execute 68k routine
595 void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
596 {
597 #if EMUL_TIME_STATS
598 exec68k_count++;
599 const clock_t exec68k_start = clock();
600 #endif
601
602 #if SAFE_EXEC_68K
603 if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
604 printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
605 #endif
606
607 // Save program counters and branch registers
608 uint32 saved_pc = pc();
609 uint32 saved_lr = lr();
610 uint32 saved_ctr= ctr();
611 uint32 saved_cr = get_cr();
612
613 // Create MacOS stack frame
614 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
615 uint32 sp = gpr(1);
616 gpr(1) -= 56;
617 WriteMacInt32(gpr(1), sp);
618
619 // Save PowerPC registers
620 uint32 saved_GPRs[19];
621 memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
622 #if SAVE_FP_EXEC_68K
623 double saved_FPRs[18];
624 memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
625 #endif
626
627 // Setup registers for 68k emulator
628 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
629 for (int i = 0; i < 8; i++) // d[0]..d[7]
630 gpr(8 + i) = r->d[i];
631 for (int i = 0; i < 7; i++) // a[0]..a[6]
632 gpr(16 + i) = r->a[i];
633 gpr(23) = 0;
634 gpr(24) = entry;
635 gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
636 gpr(26) = 0;
637 gpr(28) = 0; // VBR
638 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
639 gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
640 gpr(31) = KernelDataAddr + 0x1000;
641
642 // Push return address (points to EXEC_RETURN opcode) on stack
643 gpr(1) -= 4;
644 WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
645
646 // Rentering 68k emulator
647 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
648
649 // Set r0 to 0 for 68k emulator
650 gpr(0) = 0;
651
652 // Execute 68k opcode
653 uint32 opcode = ReadMacInt16(gpr(24));
654 gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
655 gpr(29) += opcode * 8;
656 execute(gpr(29));
657
658 // Save r25 (contains current 68k interrupt level)
659 WriteMacInt32(XLM_68K_R25, gpr(25));
660
661 // Reentering EMUL_OP mode
662 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
663
664 // Save 68k registers
665 for (int i = 0; i < 8; i++) // d[0]..d[7]
666 r->d[i] = gpr(8 + i);
667 for (int i = 0; i < 7; i++) // a[0]..a[6]
668 r->a[i] = gpr(16 + i);
669
670 // Restore PowerPC registers
671 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
672 #if SAVE_FP_EXEC_68K
673 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
674 #endif
675
676 // Cleanup stack
677 gpr(1) += 56;
678
679 // Restore program counters and branch registers
680 pc() = saved_pc;
681 lr() = saved_lr;
682 ctr()= saved_ctr;
683 set_cr(saved_cr);
684
685 #if EMUL_TIME_STATS
686 exec68k_time += (clock() - exec68k_start);
687 #endif
688 }
689
690 // Call MacOS PPC code
691 uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
692 {
693 #if EMUL_TIME_STATS
694 macos_exec_count++;
695 const clock_t macos_exec_start = clock();
696 #endif
697
698 // Save program counters and branch registers
699 uint32 saved_pc = pc();
700 uint32 saved_lr = lr();
701 uint32 saved_ctr= ctr();
702
703 // Build trampoline with EXEC_RETURN
704 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
705 lr() = trampoline.addr();
706
707 gpr(1) -= 64; // Create stack frame
708 uint32 proc = ReadMacInt32(tvect); // Get routine address
709 uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
710
711 // Save PowerPC registers
712 uint32 regs[8];
713 regs[0] = gpr(2);
714 for (int i = 0; i < nargs; i++)
715 regs[i + 1] = gpr(i + 3);
716
717 // Prepare and call MacOS routine
718 gpr(2) = toc;
719 for (int i = 0; i < nargs; i++)
720 gpr(i + 3) = args[i];
721 execute(proc);
722 uint32 retval = gpr(3);
723
724 // Restore PowerPC registers
725 for (int i = 0; i <= nargs; i++)
726 gpr(i + 2) = regs[i];
727
728 // Cleanup stack
729 gpr(1) += 64;
730
731 // Restore program counters and branch registers
732 pc() = saved_pc;
733 lr() = saved_lr;
734 ctr()= saved_ctr;
735
736 #if EMUL_TIME_STATS
737 macos_exec_time += (clock() - macos_exec_start);
738 #endif
739
740 return retval;
741 }
742
743 // Execute ppc routine
744 inline void sheepshaver_cpu::execute_ppc(uint32 entry)
745 {
746 // Save branch registers
747 uint32 saved_lr = lr();
748
749 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
750 WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
751 lr() = trampoline.addr();
752
753 execute(entry);
754
755 // Restore branch registers
756 lr() = saved_lr;
757 }
758
759 // Resource Manager thunk
760 inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
761 {
762 uint32 type = gpr(3);
763 int16 id = gpr(4);
764
765 // Create stack frame
766 gpr(1) -= 56;
767
768 // Call old routine
769 execute_ppc(old_get_resource);
770
771 // Call CheckLoad()
772 uint32 handle = gpr(3);
773 check_load_invoc(type, id, handle);
774 gpr(3) = handle;
775
776 // Cleanup stack
777 gpr(1) += 56;
778 }
779
780
781 /**
782 * SheepShaver CPU engine interface
783 **/
784
785 // PowerPC CPU emulator
786 static sheepshaver_cpu *ppc_cpu = NULL;
787
788 void FlushCodeCache(uintptr start, uintptr end)
789 {
790 D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
791 ppc_cpu->invalidate_cache_range(start, end);
792 }
793
794 // Dump PPC registers
795 static void dump_registers(void)
796 {
797 ppc_cpu->dump_registers();
798 }
799
800 // Dump log
801 static void dump_log(void)
802 {
803 ppc_cpu->dump_log();
804 }
805
806 /*
807 * Initialize CPU emulation
808 */
809
810 sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
811 {
812 #if ENABLE_VOSF
813 // Handle screen fault
814 extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
815 if (Screen_fault_handler(fault_address, fault_instruction))
816 return SIGSEGV_RETURN_SUCCESS;
817 #endif
818
819 const uintptr addr = (uintptr)fault_address;
820 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
821 // Ignore writes to ROM
822 if ((addr - (uintptr)ROMBaseHost) < ROM_SIZE)
823 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
824
825 // Get program counter of target CPU
826 sheepshaver_cpu * const cpu = ppc_cpu;
827 const uint32 pc = cpu->pc();
828
829 // Fault in Mac ROM or RAM?
830 bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize)) || (pc >= DR_CACHE_BASE && pc < (DR_CACHE_BASE + DR_CACHE_SIZE));
831 if (mac_fault) {
832
833 // "VM settings" during MacOS 8 installation
834 if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
835 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
836
837 // MacOS 8.5 installation
838 else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
839 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
840
841 // MacOS 8 serial drivers on startup
842 else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
843 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
844
845 // MacOS 8.1 serial drivers on startup
846 else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
847 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
848 else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
849 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
850
851 // MacOS 8.6 serial drivers on startup (with DR Cache and OldWorld ROM)
852 else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(16) == 0xf3012002 || cpu->gpr(16) == 0xf3012000))
853 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
854 else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
855 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
856
857 // Ignore writes to the zero page
858 else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
859 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
860
861 // Ignore all other faults, if requested
862 if (PrefsFindBool("ignoresegv"))
863 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
864 }
865 #else
866 #error "FIXME: You don't have the capability to skip instruction within signal handlers"
867 #endif
868
869 printf("SIGSEGV\n");
870 printf(" pc %p\n", fault_instruction);
871 printf(" ea %p\n", fault_address);
872 dump_registers();
873 ppc_cpu->dump_log();
874 enter_mon();
875 QuitEmulator();
876
877 return SIGSEGV_RETURN_FAILURE;
878 }
879
880 void init_emul_ppc(void)
881 {
882 // Get pointer to KernelData in host address space
883 kernel_data = (KernelData *)Mac2HostAddr(KERNEL_DATA_BASE);
884
885 // Initialize main CPU emulator
886 ppc_cpu = new sheepshaver_cpu();
887 ppc_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
888 ppc_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
889 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
890
891 #if ENABLE_MON
892 // Install "regs" command in cxmon
893 mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
894 mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
895 #endif
896
897 #if EMUL_TIME_STATS
898 emul_start_time = clock();
899 #endif
900 }
901
902 /*
903 * Deinitialize emulation
904 */
905
906 void exit_emul_ppc(void)
907 {
908 #if EMUL_TIME_STATS
909 clock_t emul_end_time = clock();
910
911 printf("### Statistics for SheepShaver emulation parts\n");
912 const clock_t emul_time = emul_end_time - emul_start_time;
913 printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
914 printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
915 (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
916 printf("Total ppc interrupt count: %d (%2.1f %%)\n", ppc_interrupt_count,
917 (double(ppc_interrupt_count) * 100.0) / double(interrupt_count));
918
919 #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
920 printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
921 printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
922 double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
923 100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
924 } while (0)
925
926 PRINT_STATS("Execute68k[Trap] execution", exec68k);
927 PRINT_STATS("NativeOp execution", native_exec);
928 PRINT_STATS("MacOS routine execution", macos_exec);
929
930 #undef PRINT_STATS
931 printf("\n");
932 #endif
933
934 delete ppc_cpu;
935 }
936
937 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
938 // Initialize EmulOp trampolines
939 void init_emul_op_trampolines(basic_dyngen & dg)
940 {
941 typedef void (*func_t)(dyngen_cpu_base, uint32);
942 func_t func;
943
944 // EmulOp
945 emul_op_trampoline = dg.gen_start();
946 func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
947 dg.gen_invoke_CPU_T0(func);
948 dg.gen_exec_return();
949 dg.gen_end();
950
951 // NativeOp
952 native_op_trampoline = dg.gen_start();
953 func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
954 dg.gen_invoke_CPU_T0(func);
955 dg.gen_exec_return();
956 dg.gen_end();
957
958 D(bug("EmulOp trampoline: %p\n", emul_op_trampoline));
959 D(bug("NativeOp trampoline: %p\n", native_op_trampoline));
960 }
961 #endif
962
963 /*
964 * Emulation loop
965 */
966
967 void emul_ppc(uint32 entry)
968 {
969 #if 0
970 ppc_cpu->start_log();
971 #endif
972 // start emulation loop and enable code translation or caching
973 ppc_cpu->execute(entry);
974 }
975
976 /*
977 * Handle PowerPC interrupt
978 */
979
980 void TriggerInterrupt(void)
981 {
982 #if 0
983 WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
984 #else
985 // Trigger interrupt to main cpu only
986 if (ppc_cpu)
987 ppc_cpu->trigger_interrupt();
988 #endif
989 }
990
991 void sheepshaver_cpu::handle_interrupt(void)
992 {
993 #ifdef USE_SDL_VIDEO
994 // We must fill in the events queue in the same thread that did call SDL_SetVideoMode()
995 SDL_PumpEvents();
996 #endif
997
998 // Do nothing if interrupts are disabled
999 if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0)
1000 return;
1001
1002 // Current interrupt nest level
1003 static int interrupt_depth = 0;
1004 ++interrupt_depth;
1005 #if EMUL_TIME_STATS
1006 interrupt_count++;
1007 #endif
1008
1009 // Disable MacOS stack sniffer
1010 WriteMacInt32(0x110, 0);
1011
1012 // Interrupt action depends on current run mode
1013 switch (ReadMacInt32(XLM_RUN_MODE)) {
1014 case MODE_68K:
1015 // 68k emulator active, trigger 68k interrupt level 1
1016 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
1017 set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
1018 break;
1019
1020 #if INTERRUPTS_IN_NATIVE_MODE
1021 case MODE_NATIVE:
1022 // 68k emulator inactive, in nanokernel?
1023 if (gpr(1) != KernelDataAddr && interrupt_depth == 1) {
1024 interrupt_context ctx(this, "PowerPC mode");
1025
1026 // Prepare for 68k interrupt level 1
1027 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
1028 WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
1029 ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
1030 | tswap32(kernel_data->v[0x674 >> 2]));
1031
1032 // Execute nanokernel interrupt routine (this will activate the 68k emulator)
1033 DisableInterrupt();
1034 if (ROMType == ROMTYPE_NEWWORLD)
1035 ppc_cpu->interrupt(ROM_BASE + 0x312b1c);
1036 else
1037 ppc_cpu->interrupt(ROM_BASE + 0x312a3c);
1038 }
1039 break;
1040 #endif
1041
1042 #if INTERRUPTS_IN_EMUL_OP_MODE
1043 case MODE_EMUL_OP:
1044 // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
1045 if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
1046 interrupt_context ctx(this, "68k mode");
1047 #if EMUL_TIME_STATS
1048 const clock_t interrupt_start = clock();
1049 #endif
1050 #if 1
1051 // Execute full 68k interrupt routine
1052 M68kRegisters r;
1053 uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
1054 WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
1055 static const uint8 proc_template[] = {
1056 0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
1057 0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
1058 0x40, 0xe7, // move sr,-(sp) (saved SR)
1059 0x20, 0x78, 0x00, 0x064, // move.l $64,a0
1060 0x4e, 0xd0, // jmp (a0)
1061 M68K_RTS >> 8, M68K_RTS & 0xff // @1
1062 };
1063 BUILD_SHEEPSHAVER_PROCEDURE(proc);
1064 Execute68k(proc, &r);
1065 WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
1066 #else
1067 // Only update cursor
1068 if (HasMacStarted()) {
1069 if (InterruptFlags & INTFLAG_VIA) {
1070 ClearInterruptFlag(INTFLAG_VIA);
1071 ADBInterrupt();
1072 ExecuteNative(NATIVE_VIDEO_VBL);
1073 }
1074 }
1075 #endif
1076 #if EMUL_TIME_STATS
1077 interrupt_time += (clock() - interrupt_start);
1078 #endif
1079 }
1080 break;
1081 #endif
1082 }
1083
1084 // We are done with this interrupt
1085 --interrupt_depth;
1086 }
1087
1088 static void get_resource(void);
1089 static void get_1_resource(void);
1090 static void get_ind_resource(void);
1091 static void get_1_ind_resource(void);
1092 static void r_get_resource(void);
1093
1094 // Execute NATIVE_OP routine
1095 void sheepshaver_cpu::execute_native_op(uint32 selector)
1096 {
1097 #if EMUL_TIME_STATS
1098 native_exec_count++;
1099 const clock_t native_exec_start = clock();
1100 #endif
1101
1102 switch (selector) {
1103 case NATIVE_PATCH_NAME_REGISTRY:
1104 DoPatchNameRegistry();
1105 break;
1106 case NATIVE_VIDEO_INSTALL_ACCEL:
1107 VideoInstallAccel();
1108 break;
1109 case NATIVE_VIDEO_VBL:
1110 VideoVBL();
1111 break;
1112 case NATIVE_VIDEO_DO_DRIVER_IO:
1113 gpr(3) = (int32)(int16)VideoDoDriverIO(gpr(3), gpr(4), gpr(5), gpr(6), gpr(7));
1114 break;
1115 case NATIVE_ETHER_IRQ:
1116 EtherIRQ();
1117 break;
1118 case NATIVE_ETHER_INIT:
1119 gpr(3) = InitStreamModule((void *)gpr(3));
1120 break;
1121 case NATIVE_ETHER_TERM:
1122 TerminateStreamModule();
1123 break;
1124 case NATIVE_ETHER_OPEN:
1125 gpr(3) = ether_open((queue_t *)gpr(3), (void *)gpr(4), gpr(5), gpr(6), (void*)gpr(7));
1126 break;
1127 case NATIVE_ETHER_CLOSE:
1128 gpr(3) = ether_close((queue_t *)gpr(3), gpr(4), (void *)gpr(5));
1129 break;
1130 case NATIVE_ETHER_WPUT:
1131 gpr(3) = ether_wput((queue_t *)gpr(3), (mblk_t *)gpr(4));
1132 break;
1133 case NATIVE_ETHER_RSRV:
1134 gpr(3) = ether_rsrv((queue_t *)gpr(3));
1135 break;
1136 case NATIVE_SYNC_HOOK:
1137 gpr(3) = NQD_sync_hook(gpr(3));
1138 break;
1139 case NATIVE_BITBLT_HOOK:
1140 gpr(3) = NQD_bitblt_hook(gpr(3));
1141 break;
1142 case NATIVE_BITBLT:
1143 NQD_bitblt(gpr(3));
1144 break;
1145 case NATIVE_FILLRECT_HOOK:
1146 gpr(3) = NQD_fillrect_hook(gpr(3));
1147 break;
1148 case NATIVE_INVRECT:
1149 NQD_invrect(gpr(3));
1150 break;
1151 case NATIVE_FILLRECT:
1152 NQD_fillrect(gpr(3));
1153 break;
1154 case NATIVE_SERIAL_NOTHING:
1155 case NATIVE_SERIAL_OPEN:
1156 case NATIVE_SERIAL_PRIME_IN:
1157 case NATIVE_SERIAL_PRIME_OUT:
1158 case NATIVE_SERIAL_CONTROL:
1159 case NATIVE_SERIAL_STATUS:
1160 case NATIVE_SERIAL_CLOSE: {
1161 typedef int16 (*SerialCallback)(uint32, uint32);
1162 static const SerialCallback serial_callbacks[] = {
1163 SerialNothing,
1164 SerialOpen,
1165 SerialPrimeIn,
1166 SerialPrimeOut,
1167 SerialControl,
1168 SerialStatus,
1169 SerialClose
1170 };
1171 gpr(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](gpr(3), gpr(4));
1172 break;
1173 }
1174 case NATIVE_GET_RESOURCE:
1175 case NATIVE_GET_1_RESOURCE:
1176 case NATIVE_GET_IND_RESOURCE:
1177 case NATIVE_GET_1_IND_RESOURCE:
1178 case NATIVE_R_GET_RESOURCE: {
1179 typedef void (*GetResourceCallback)(void);
1180 static const GetResourceCallback get_resource_callbacks[] = {
1181 ::get_resource,
1182 ::get_1_resource,
1183 ::get_ind_resource,
1184 ::get_1_ind_resource,
1185 ::r_get_resource
1186 };
1187 get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
1188 break;
1189 }
1190 case NATIVE_MAKE_EXECUTABLE:
1191 MakeExecutable(0, gpr(4), gpr(5));
1192 break;
1193 case NATIVE_CHECK_LOAD_INVOC:
1194 check_load_invoc(gpr(3), gpr(4), gpr(5));
1195 break;
1196 default:
1197 printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
1198 QuitEmulator();
1199 break;
1200 }
1201
1202 #if EMUL_TIME_STATS
1203 native_exec_time += (clock() - native_exec_start);
1204 #endif
1205 }
1206
1207 /*
1208 * Execute 68k subroutine (must be ended with EXEC_RETURN)
1209 * This must only be called by the emul_thread when in EMUL_OP mode
1210 * r->a[7] is unused, the routine runs on the caller's stack
1211 */
1212
1213 void Execute68k(uint32 pc, M68kRegisters *r)
1214 {
1215 ppc_cpu->execute_68k(pc, r);
1216 }
1217
1218 /*
1219 * Execute 68k A-Trap from EMUL_OP routine
1220 * r->a[7] is unused, the routine runs on the caller's stack
1221 */
1222
1223 void Execute68kTrap(uint16 trap, M68kRegisters *r)
1224 {
1225 SheepVar proc_var(4);
1226 uint32 proc = proc_var.addr();
1227 WriteMacInt16(proc, trap);
1228 WriteMacInt16(proc + 2, M68K_RTS);
1229 Execute68k(proc, r);
1230 }
1231
1232 /*
1233 * Call MacOS PPC code
1234 */
1235
1236 uint32 call_macos(uint32 tvect)
1237 {
1238 return ppc_cpu->execute_macos_code(tvect, 0, NULL);
1239 }
1240
1241 uint32 call_macos1(uint32 tvect, uint32 arg1)
1242 {
1243 const uint32 args[] = { arg1 };
1244 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1245 }
1246
1247 uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1248 {
1249 const uint32 args[] = { arg1, arg2 };
1250 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1251 }
1252
1253 uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1254 {
1255 const uint32 args[] = { arg1, arg2, arg3 };
1256 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1257 }
1258
1259 uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1260 {
1261 const uint32 args[] = { arg1, arg2, arg3, arg4 };
1262 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1263 }
1264
1265 uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1266 {
1267 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1268 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1269 }
1270
1271 uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1272 {
1273 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1274 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1275 }
1276
1277 uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1278 {
1279 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1280 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1281 }
1282
1283 /*
1284 * Resource Manager thunks
1285 */
1286
1287 void get_resource(void)
1288 {
1289 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1290 }
1291
1292 void get_1_resource(void)
1293 {
1294 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1295 }
1296
1297 void get_ind_resource(void)
1298 {
1299 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1300 }
1301
1302 void get_1_ind_resource(void)
1303 {
1304 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1305 }
1306
1307 void r_get_resource(void)
1308 {
1309 ppc_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1310 }