ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.66
Committed: 2005-12-06T22:25:13Z (18 years, 6 months ago) by gbeauche
Branch: MAIN
Changes since 1.65: +0 -42 lines
Log Message:
Align PowerPC registers struct manually, i.e. don't depend on non-portable
compiler extensions (e.g. GCC __attribute__((aligned(N)))).

File Contents

# Content
1 /*
2 * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3 *
4 * SheepShaver (C) 1997-2005 Christian Bauer and Marc Hellwig
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 #include "sysdeps.h"
22 #include "cpu_emulation.h"
23 #include "main.h"
24 #include "prefs.h"
25 #include "xlowmem.h"
26 #include "emul_op.h"
27 #include "rom_patches.h"
28 #include "macos_util.h"
29 #include "block-alloc.hpp"
30 #include "sigsegv.h"
31 #include "cpu/ppc/ppc-cpu.hpp"
32 #include "cpu/ppc/ppc-operations.hpp"
33 #include "cpu/ppc/ppc-instructions.hpp"
34 #include "thunks.h"
35
36 // Used for NativeOp trampolines
37 #include "video.h"
38 #include "name_registry.h"
39 #include "serial.h"
40 #include "ether.h"
41 #include "timer.h"
42
43 #include <stdio.h>
44 #include <stdlib.h>
45 #ifdef HAVE_MALLOC_H
46 #include <malloc.h>
47 #endif
48
49 #ifdef USE_SDL_VIDEO
50 #include <SDL_events.h>
51 #endif
52
53 #if ENABLE_MON
54 #include "mon.h"
55 #include "mon_disass.h"
56 #endif
57
58 #define DEBUG 0
59 #include "debug.h"
60
61 // Emulation time statistics
62 #ifndef EMUL_TIME_STATS
63 #define EMUL_TIME_STATS 0
64 #endif
65
66 #if EMUL_TIME_STATS
67 static clock_t emul_start_time;
68 static uint32 interrupt_count = 0, ppc_interrupt_count = 0;
69 static clock_t interrupt_time = 0;
70 static uint32 exec68k_count = 0;
71 static clock_t exec68k_time = 0;
72 static uint32 native_exec_count = 0;
73 static clock_t native_exec_time = 0;
74 static uint32 macos_exec_count = 0;
75 static clock_t macos_exec_time = 0;
76 #endif
77
78 static void enter_mon(void)
79 {
80 // Start up mon in real-mode
81 #if ENABLE_MON
82 char *arg[4] = {"mon", "-m", "-r", NULL};
83 mon(3, arg);
84 #endif
85 }
86
87 // From main_*.cpp
88 extern uintptr SignalStackBase();
89
90 // From rsrc_patches.cpp
91 extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
92
93 // PowerPC EmulOp to exit from emulation looop
94 const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
95
96 // Enable Execute68k() safety checks?
97 #define SAFE_EXEC_68K 1
98
99 // Save FP state in Execute68k()?
100 #define SAVE_FP_EXEC_68K 1
101
102 // Interrupts in EMUL_OP mode?
103 #define INTERRUPTS_IN_EMUL_OP_MODE 1
104
105 // Interrupts in native mode?
106 #define INTERRUPTS_IN_NATIVE_MODE 1
107
108 // Pointer to Kernel Data
109 static KernelData * kernel_data;
110
111 // SIGSEGV handler
112 sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
113
114 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
115 // Special trampolines for EmulOp and NativeOp
116 static uint8 *emul_op_trampoline;
117 static uint8 *native_op_trampoline;
118 #endif
119
120 // JIT Compiler enabled?
121 static inline bool enable_jit_p()
122 {
123 return PrefsFindBool("jit");
124 }
125
126
127 /**
128 * PowerPC emulator glue with special 'sheep' opcodes
129 **/
130
131 enum {
132 PPC_I(SHEEP) = PPC_I(MAX),
133 PPC_I(SHEEP_MAX)
134 };
135
136 class sheepshaver_cpu
137 : public powerpc_cpu
138 {
139 void init_decoder();
140 void execute_sheep(uint32 opcode);
141
142 public:
143
144 // Constructor
145 sheepshaver_cpu();
146
147 // CR & XER accessors
148 uint32 get_cr() const { return cr().get(); }
149 void set_cr(uint32 v) { cr().set(v); }
150 uint32 get_xer() const { return xer().get(); }
151 void set_xer(uint32 v) { xer().set(v); }
152
153 // Execute NATIVE_OP routine
154 void execute_native_op(uint32 native_op);
155
156 // Execute EMUL_OP routine
157 void execute_emul_op(uint32 emul_op);
158
159 // Execute 68k routine
160 void execute_68k(uint32 entry, M68kRegisters *r);
161
162 // Execute ppc routine
163 void execute_ppc(uint32 entry);
164
165 // Execute MacOS/PPC code
166 uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
167
168 #if PPC_ENABLE_JIT
169 // Compile one instruction
170 virtual int compile1(codegen_context_t & cg_context);
171 #endif
172 // Resource manager thunk
173 void get_resource(uint32 old_get_resource);
174
175 // Handle MacOS interrupt
176 void interrupt(uint32 entry);
177
178 // Make sure the SIGSEGV handler can access CPU registers
179 friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
180 };
181
182 sheepshaver_cpu::sheepshaver_cpu()
183 : powerpc_cpu(enable_jit_p())
184 {
185 init_decoder();
186 }
187
188 void sheepshaver_cpu::init_decoder()
189 {
190 static const instr_info_t sheep_ii_table[] = {
191 { "sheep",
192 (execute_pmf)&sheepshaver_cpu::execute_sheep,
193 NULL,
194 PPC_I(SHEEP),
195 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
196 }
197 };
198
199 const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
200 D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
201
202 for (int i = 0; i < ii_count; i++) {
203 const instr_info_t * ii = &sheep_ii_table[i];
204 init_decoder_entry(ii);
205 }
206 }
207
208 /* NativeOp instruction format:
209 +------------+-------------------------+--+-----------+------------+
210 | 6 | |FN| OP | 2 |
211 +------------+-------------------------+--+-----------+------------+
212 0 5 |6 18 19 20 25 26 31
213 */
214
215 typedef bit_field< 19, 19 > FN_field;
216 typedef bit_field< 20, 25 > NATIVE_OP_field;
217 typedef bit_field< 26, 31 > EMUL_OP_field;
218
219 // Execute EMUL_OP routine
220 void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
221 {
222 M68kRegisters r68;
223 WriteMacInt32(XLM_68K_R25, gpr(25));
224 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
225 for (int i = 0; i < 8; i++)
226 r68.d[i] = gpr(8 + i);
227 for (int i = 0; i < 7; i++)
228 r68.a[i] = gpr(16 + i);
229 r68.a[7] = gpr(1);
230 uint32 saved_cr = get_cr() & 0xff9fffff; // mask_operand::compute(11, 8)
231 uint32 saved_xer = get_xer();
232 EmulOp(&r68, gpr(24), emul_op);
233 set_cr(saved_cr);
234 set_xer(saved_xer);
235 for (int i = 0; i < 8; i++)
236 gpr(8 + i) = r68.d[i];
237 for (int i = 0; i < 7; i++)
238 gpr(16 + i) = r68.a[i];
239 gpr(1) = r68.a[7];
240 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
241 }
242
243 // Execute SheepShaver instruction
244 void sheepshaver_cpu::execute_sheep(uint32 opcode)
245 {
246 // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
247 assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
248
249 switch (opcode & 0x3f) {
250 case 0: // EMUL_RETURN
251 QuitEmulator();
252 break;
253
254 case 1: // EXEC_RETURN
255 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
256 break;
257
258 case 2: // EXEC_NATIVE
259 execute_native_op(NATIVE_OP_field::extract(opcode));
260 if (FN_field::test(opcode))
261 pc() = lr();
262 else
263 pc() += 4;
264 break;
265
266 default: // EMUL_OP
267 execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
268 pc() += 4;
269 break;
270 }
271 }
272
273 // Compile one instruction
274 #if PPC_ENABLE_JIT
275 int sheepshaver_cpu::compile1(codegen_context_t & cg_context)
276 {
277 const instr_info_t *ii = cg_context.instr_info;
278 if (ii->mnemo != PPC_I(SHEEP))
279 return COMPILE_FAILURE;
280
281 int status = COMPILE_FAILURE;
282 powerpc_dyngen & dg = cg_context.codegen;
283 uint32 opcode = cg_context.opcode;
284
285 switch (opcode & 0x3f) {
286 case 0: // EMUL_RETURN
287 dg.gen_invoke(QuitEmulator);
288 status = COMPILE_CODE_OK;
289 break;
290
291 case 1: // EXEC_RETURN
292 dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
293 // Don't check for pending interrupts, we do know we have to
294 // get out of this block ASAP
295 dg.gen_exec_return();
296 status = COMPILE_EPILOGUE_OK;
297 break;
298
299 case 2: { // EXEC_NATIVE
300 uint32 selector = NATIVE_OP_field::extract(opcode);
301 switch (selector) {
302 #if !PPC_REENTRANT_JIT
303 // Filter out functions that may invoke Execute68k() or
304 // CallMacOS(), this would break reentrancy as they could
305 // invalidate the translation cache and even overwrite
306 // continuation code when we are done with them.
307 case NATIVE_PATCH_NAME_REGISTRY:
308 dg.gen_invoke(DoPatchNameRegistry);
309 status = COMPILE_CODE_OK;
310 break;
311 case NATIVE_VIDEO_INSTALL_ACCEL:
312 dg.gen_invoke(VideoInstallAccel);
313 status = COMPILE_CODE_OK;
314 break;
315 case NATIVE_VIDEO_VBL:
316 dg.gen_invoke(VideoVBL);
317 status = COMPILE_CODE_OK;
318 break;
319 case NATIVE_GET_RESOURCE:
320 case NATIVE_GET_1_RESOURCE:
321 case NATIVE_GET_IND_RESOURCE:
322 case NATIVE_GET_1_IND_RESOURCE:
323 case NATIVE_R_GET_RESOURCE: {
324 static const uint32 get_resource_ptr[] = {
325 XLM_GET_RESOURCE,
326 XLM_GET_1_RESOURCE,
327 XLM_GET_IND_RESOURCE,
328 XLM_GET_1_IND_RESOURCE,
329 XLM_R_GET_RESOURCE
330 };
331 uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
332 typedef void (*func_t)(dyngen_cpu_base, uint32);
333 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
334 dg.gen_invoke_CPU_im(func, old_get_resource);
335 status = COMPILE_CODE_OK;
336 break;
337 }
338 case NATIVE_CHECK_LOAD_INVOC:
339 dg.gen_load_T0_GPR(3);
340 dg.gen_load_T1_GPR(4);
341 dg.gen_se_16_32_T1();
342 dg.gen_load_T2_GPR(5);
343 dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
344 status = COMPILE_CODE_OK;
345 break;
346 #endif
347 case NATIVE_BITBLT:
348 dg.gen_load_T0_GPR(3);
349 dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt);
350 status = COMPILE_CODE_OK;
351 break;
352 case NATIVE_INVRECT:
353 dg.gen_load_T0_GPR(3);
354 dg.gen_invoke_T0((void (*)(uint32))NQD_invrect);
355 status = COMPILE_CODE_OK;
356 break;
357 case NATIVE_FILLRECT:
358 dg.gen_load_T0_GPR(3);
359 dg.gen_invoke_T0((void (*)(uint32))NQD_fillrect);
360 status = COMPILE_CODE_OK;
361 break;
362 }
363 // Could we fully translate this NativeOp?
364 if (status == COMPILE_CODE_OK) {
365 if (!FN_field::test(opcode))
366 cg_context.done_compile = false;
367 else {
368 dg.gen_load_A0_LR();
369 dg.gen_set_PC_A0();
370 cg_context.done_compile = true;
371 }
372 break;
373 }
374 #if PPC_REENTRANT_JIT
375 // Try to execute NativeOp trampoline
376 if (!FN_field::test(opcode))
377 dg.gen_set_PC_im(cg_context.pc + 4);
378 else {
379 dg.gen_load_A0_LR();
380 dg.gen_set_PC_A0();
381 }
382 dg.gen_mov_32_T0_im(selector);
383 dg.gen_jmp(native_op_trampoline);
384 cg_context.done_compile = true;
385 status = COMPILE_EPILOGUE_OK;
386 break;
387 #endif
388 // Invoke NativeOp handler
389 if (!FN_field::test(opcode)) {
390 typedef void (*func_t)(dyngen_cpu_base, uint32);
391 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
392 dg.gen_invoke_CPU_im(func, selector);
393 cg_context.done_compile = false;
394 status = COMPILE_CODE_OK;
395 }
396 // Otherwise, let it generate a call to execute_sheep() which
397 // will cause necessary updates to the program counter
398 break;
399 }
400
401 default: { // EMUL_OP
402 uint32 emul_op = EMUL_OP_field::extract(opcode) - 3;
403 #if PPC_REENTRANT_JIT
404 // Try to execute EmulOp trampoline
405 dg.gen_set_PC_im(cg_context.pc + 4);
406 dg.gen_mov_32_T0_im(emul_op);
407 dg.gen_jmp(emul_op_trampoline);
408 cg_context.done_compile = true;
409 status = COMPILE_EPILOGUE_OK;
410 break;
411 #endif
412 // Invoke EmulOp handler
413 typedef void (*func_t)(dyngen_cpu_base, uint32);
414 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
415 dg.gen_invoke_CPU_im(func, emul_op);
416 cg_context.done_compile = false;
417 status = COMPILE_CODE_OK;
418 break;
419 }
420 }
421 return status;
422 }
423 #endif
424
425 // Handle MacOS interrupt
426 void sheepshaver_cpu::interrupt(uint32 entry)
427 {
428 #if EMUL_TIME_STATS
429 ppc_interrupt_count++;
430 const clock_t interrupt_start = clock();
431 #endif
432
433 // Save program counters and branch registers
434 uint32 saved_pc = pc();
435 uint32 saved_lr = lr();
436 uint32 saved_ctr= ctr();
437 uint32 saved_sp = gpr(1);
438
439 // Initialize stack pointer to SheepShaver alternate stack base
440 gpr(1) = SignalStackBase() - 64;
441
442 // Build trampoline to return from interrupt
443 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
444
445 // Prepare registers for nanokernel interrupt routine
446 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
447 kernel_data->v[0x018 >> 2] = htonl(gpr(6));
448
449 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
450 assert(gpr(6) != 0);
451 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
452 WriteMacInt32(gpr(6) + 0x144, gpr(8));
453 WriteMacInt32(gpr(6) + 0x14c, gpr(9));
454 WriteMacInt32(gpr(6) + 0x154, gpr(10));
455 WriteMacInt32(gpr(6) + 0x15c, gpr(11));
456 WriteMacInt32(gpr(6) + 0x164, gpr(12));
457 WriteMacInt32(gpr(6) + 0x16c, gpr(13));
458
459 gpr(1) = KernelDataAddr;
460 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
461 gpr(8) = 0;
462 gpr(10) = trampoline.addr();
463 gpr(12) = trampoline.addr();
464 gpr(13) = get_cr();
465
466 // rlwimi. r7,r7,8,0,0
467 uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
468 record_cr0(result);
469 gpr(7) = result;
470
471 gpr(11) = 0xf072; // MSR (SRR1)
472 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
473
474 // Enter nanokernel
475 execute(entry);
476
477 // Restore program counters and branch registers
478 pc() = saved_pc;
479 lr() = saved_lr;
480 ctr()= saved_ctr;
481 gpr(1) = saved_sp;
482
483 #if EMUL_TIME_STATS
484 interrupt_time += (clock() - interrupt_start);
485 #endif
486 }
487
488 // Execute 68k routine
489 void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
490 {
491 #if EMUL_TIME_STATS
492 exec68k_count++;
493 const clock_t exec68k_start = clock();
494 #endif
495
496 #if SAFE_EXEC_68K
497 if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
498 printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
499 #endif
500
501 // Save program counters and branch registers
502 uint32 saved_pc = pc();
503 uint32 saved_lr = lr();
504 uint32 saved_ctr= ctr();
505 uint32 saved_cr = get_cr();
506
507 // Create MacOS stack frame
508 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
509 uint32 sp = gpr(1);
510 gpr(1) -= 56;
511 WriteMacInt32(gpr(1), sp);
512
513 // Save PowerPC registers
514 uint32 saved_GPRs[19];
515 memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
516 #if SAVE_FP_EXEC_68K
517 double saved_FPRs[18];
518 memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
519 #endif
520
521 // Setup registers for 68k emulator
522 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
523 for (int i = 0; i < 8; i++) // d[0]..d[7]
524 gpr(8 + i) = r->d[i];
525 for (int i = 0; i < 7; i++) // a[0]..a[6]
526 gpr(16 + i) = r->a[i];
527 gpr(23) = 0;
528 gpr(24) = entry;
529 gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
530 gpr(26) = 0;
531 gpr(28) = 0; // VBR
532 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
533 gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
534 gpr(31) = KernelDataAddr + 0x1000;
535
536 // Push return address (points to EXEC_RETURN opcode) on stack
537 gpr(1) -= 4;
538 WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
539
540 // Rentering 68k emulator
541 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
542
543 // Set r0 to 0 for 68k emulator
544 gpr(0) = 0;
545
546 // Execute 68k opcode
547 uint32 opcode = ReadMacInt16(gpr(24));
548 gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
549 gpr(29) += opcode * 8;
550 execute(gpr(29));
551
552 // Save r25 (contains current 68k interrupt level)
553 WriteMacInt32(XLM_68K_R25, gpr(25));
554
555 // Reentering EMUL_OP mode
556 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
557
558 // Save 68k registers
559 for (int i = 0; i < 8; i++) // d[0]..d[7]
560 r->d[i] = gpr(8 + i);
561 for (int i = 0; i < 7; i++) // a[0]..a[6]
562 r->a[i] = gpr(16 + i);
563
564 // Restore PowerPC registers
565 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
566 #if SAVE_FP_EXEC_68K
567 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
568 #endif
569
570 // Cleanup stack
571 gpr(1) += 56;
572
573 // Restore program counters and branch registers
574 pc() = saved_pc;
575 lr() = saved_lr;
576 ctr()= saved_ctr;
577 set_cr(saved_cr);
578
579 #if EMUL_TIME_STATS
580 exec68k_time += (clock() - exec68k_start);
581 #endif
582 }
583
584 // Call MacOS PPC code
585 uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
586 {
587 #if EMUL_TIME_STATS
588 macos_exec_count++;
589 const clock_t macos_exec_start = clock();
590 #endif
591
592 // Save program counters and branch registers
593 uint32 saved_pc = pc();
594 uint32 saved_lr = lr();
595 uint32 saved_ctr= ctr();
596
597 // Build trampoline with EXEC_RETURN
598 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
599 lr() = trampoline.addr();
600
601 gpr(1) -= 64; // Create stack frame
602 uint32 proc = ReadMacInt32(tvect); // Get routine address
603 uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
604
605 // Save PowerPC registers
606 uint32 regs[8];
607 regs[0] = gpr(2);
608 for (int i = 0; i < nargs; i++)
609 regs[i + 1] = gpr(i + 3);
610
611 // Prepare and call MacOS routine
612 gpr(2) = toc;
613 for (int i = 0; i < nargs; i++)
614 gpr(i + 3) = args[i];
615 execute(proc);
616 uint32 retval = gpr(3);
617
618 // Restore PowerPC registers
619 for (int i = 0; i <= nargs; i++)
620 gpr(i + 2) = regs[i];
621
622 // Cleanup stack
623 gpr(1) += 64;
624
625 // Restore program counters and branch registers
626 pc() = saved_pc;
627 lr() = saved_lr;
628 ctr()= saved_ctr;
629
630 #if EMUL_TIME_STATS
631 macos_exec_time += (clock() - macos_exec_start);
632 #endif
633
634 return retval;
635 }
636
637 // Execute ppc routine
638 inline void sheepshaver_cpu::execute_ppc(uint32 entry)
639 {
640 // Save branch registers
641 uint32 saved_lr = lr();
642
643 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
644 WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
645 lr() = trampoline.addr();
646
647 execute(entry);
648
649 // Restore branch registers
650 lr() = saved_lr;
651 }
652
653 // Resource Manager thunk
654 inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
655 {
656 uint32 type = gpr(3);
657 int16 id = gpr(4);
658
659 // Create stack frame
660 gpr(1) -= 56;
661
662 // Call old routine
663 execute_ppc(old_get_resource);
664
665 // Call CheckLoad()
666 uint32 handle = gpr(3);
667 check_load_invoc(type, id, handle);
668 gpr(3) = handle;
669
670 // Cleanup stack
671 gpr(1) += 56;
672 }
673
674
675 /**
676 * SheepShaver CPU engine interface
677 **/
678
679 // PowerPC CPU emulator
680 static sheepshaver_cpu *ppc_cpu = NULL;
681
682 void FlushCodeCache(uintptr start, uintptr end)
683 {
684 D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
685 ppc_cpu->invalidate_cache_range(start, end);
686 }
687
688 // Dump PPC registers
689 static void dump_registers(void)
690 {
691 ppc_cpu->dump_registers();
692 }
693
694 // Dump log
695 static void dump_log(void)
696 {
697 ppc_cpu->dump_log();
698 }
699
700 /*
701 * Initialize CPU emulation
702 */
703
704 sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
705 {
706 #if ENABLE_VOSF
707 // Handle screen fault
708 extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
709 if (Screen_fault_handler(fault_address, fault_instruction))
710 return SIGSEGV_RETURN_SUCCESS;
711 #endif
712
713 const uintptr addr = (uintptr)fault_address;
714 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
715 // Ignore writes to ROM
716 if ((addr - (uintptr)ROMBaseHost) < ROM_SIZE)
717 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
718
719 // Get program counter of target CPU
720 sheepshaver_cpu * const cpu = ppc_cpu;
721 const uint32 pc = cpu->pc();
722
723 // Fault in Mac ROM or RAM?
724 bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize)) || (pc >= DR_CACHE_BASE && pc < (DR_CACHE_BASE + DR_CACHE_SIZE));
725 if (mac_fault) {
726
727 // "VM settings" during MacOS 8 installation
728 if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
729 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
730
731 // MacOS 8.5 installation
732 else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
733 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
734
735 // MacOS 8 serial drivers on startup
736 else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
737 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
738
739 // MacOS 8.1 serial drivers on startup
740 else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
741 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
742 else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
743 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
744
745 // MacOS 8.6 serial drivers on startup (with DR Cache and OldWorld ROM)
746 else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(16) == 0xf3012002 || cpu->gpr(16) == 0xf3012000))
747 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
748 else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
749 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
750
751 // Ignore writes to the zero page
752 else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
753 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
754
755 // Ignore all other faults, if requested
756 if (PrefsFindBool("ignoresegv"))
757 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
758 }
759 #else
760 #error "FIXME: You don't have the capability to skip instruction within signal handlers"
761 #endif
762
763 fprintf(stderr, "SIGSEGV\n");
764 fprintf(stderr, " pc %p\n", fault_instruction);
765 fprintf(stderr, " ea %p\n", fault_address);
766 dump_registers();
767 ppc_cpu->dump_log();
768 enter_mon();
769 QuitEmulator();
770
771 return SIGSEGV_RETURN_FAILURE;
772 }
773
774 void init_emul_ppc(void)
775 {
776 // Get pointer to KernelData in host address space
777 kernel_data = (KernelData *)Mac2HostAddr(KERNEL_DATA_BASE);
778
779 // Initialize main CPU emulator
780 ppc_cpu = new sheepshaver_cpu();
781 ppc_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
782 ppc_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
783 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
784
785 #if ENABLE_MON
786 // Install "regs" command in cxmon
787 mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
788 mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
789 #endif
790
791 #if EMUL_TIME_STATS
792 emul_start_time = clock();
793 #endif
794 }
795
796 /*
797 * Deinitialize emulation
798 */
799
800 void exit_emul_ppc(void)
801 {
802 #if EMUL_TIME_STATS
803 clock_t emul_end_time = clock();
804
805 printf("### Statistics for SheepShaver emulation parts\n");
806 const clock_t emul_time = emul_end_time - emul_start_time;
807 printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
808 printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
809 (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
810 printf("Total ppc interrupt count: %d (%2.1f %%)\n", ppc_interrupt_count,
811 (double(ppc_interrupt_count) * 100.0) / double(interrupt_count));
812
813 #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
814 printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
815 printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
816 double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
817 100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
818 } while (0)
819
820 PRINT_STATS("Execute68k[Trap] execution", exec68k);
821 PRINT_STATS("NativeOp execution", native_exec);
822 PRINT_STATS("MacOS routine execution", macos_exec);
823
824 #undef PRINT_STATS
825 printf("\n");
826 #endif
827
828 delete ppc_cpu;
829 }
830
831 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
832 // Initialize EmulOp trampolines
833 void init_emul_op_trampolines(basic_dyngen & dg)
834 {
835 typedef void (*func_t)(dyngen_cpu_base, uint32);
836 func_t func;
837
838 // EmulOp
839 emul_op_trampoline = dg.gen_start();
840 func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
841 dg.gen_invoke_CPU_T0(func);
842 dg.gen_exec_return();
843 dg.gen_end();
844
845 // NativeOp
846 native_op_trampoline = dg.gen_start();
847 func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
848 dg.gen_invoke_CPU_T0(func);
849 dg.gen_exec_return();
850 dg.gen_end();
851
852 D(bug("EmulOp trampoline: %p\n", emul_op_trampoline));
853 D(bug("NativeOp trampoline: %p\n", native_op_trampoline));
854 }
855 #endif
856
857 /*
858 * Emulation loop
859 */
860
861 void emul_ppc(uint32 entry)
862 {
863 #if 0
864 ppc_cpu->start_log();
865 #endif
866 // start emulation loop and enable code translation or caching
867 ppc_cpu->execute(entry);
868 }
869
870 /*
871 * Handle PowerPC interrupt
872 */
873
874 void TriggerInterrupt(void)
875 {
876 idle_resume();
877 #if 0
878 WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
879 #else
880 // Trigger interrupt to main cpu only
881 if (ppc_cpu)
882 ppc_cpu->trigger_interrupt();
883 #endif
884 }
885
886 void HandleInterrupt(powerpc_registers *r)
887 {
888 #ifdef USE_SDL_VIDEO
889 // We must fill in the events queue in the same thread that did call SDL_SetVideoMode()
890 SDL_PumpEvents();
891 #endif
892
893 // Do nothing if interrupts are disabled
894 if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0)
895 return;
896
897 // Update interrupt count
898 #if EMUL_TIME_STATS
899 interrupt_count++;
900 #endif
901
902 // Interrupt action depends on current run mode
903 switch (ReadMacInt32(XLM_RUN_MODE)) {
904 case MODE_68K:
905 // 68k emulator active, trigger 68k interrupt level 1
906 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
907 r->cr.set(r->cr.get() | tswap32(kernel_data->v[0x674 >> 2]));
908 break;
909
910 #if INTERRUPTS_IN_NATIVE_MODE
911 case MODE_NATIVE:
912 // 68k emulator inactive, in nanokernel?
913 if (r->gpr[1] != KernelDataAddr) {
914
915 // Prepare for 68k interrupt level 1
916 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
917 WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
918 ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
919 | tswap32(kernel_data->v[0x674 >> 2]));
920
921 // Execute nanokernel interrupt routine (this will activate the 68k emulator)
922 DisableInterrupt();
923 if (ROMType == ROMTYPE_NEWWORLD)
924 ppc_cpu->interrupt(ROM_BASE + 0x312b1c);
925 else
926 ppc_cpu->interrupt(ROM_BASE + 0x312a3c);
927 }
928 break;
929 #endif
930
931 #if INTERRUPTS_IN_EMUL_OP_MODE
932 case MODE_EMUL_OP:
933 // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
934 if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
935 #if EMUL_TIME_STATS
936 const clock_t interrupt_start = clock();
937 #endif
938 #if 1
939 // Execute full 68k interrupt routine
940 M68kRegisters r;
941 uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
942 WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
943 static const uint8 proc_template[] = {
944 0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
945 0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
946 0x40, 0xe7, // move sr,-(sp) (saved SR)
947 0x20, 0x78, 0x00, 0x064, // move.l $64,a0
948 0x4e, 0xd0, // jmp (a0)
949 M68K_RTS >> 8, M68K_RTS & 0xff // @1
950 };
951 BUILD_SHEEPSHAVER_PROCEDURE(proc);
952 Execute68k(proc, &r);
953 WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
954 #else
955 // Only update cursor
956 if (HasMacStarted()) {
957 if (InterruptFlags & INTFLAG_VIA) {
958 ClearInterruptFlag(INTFLAG_VIA);
959 ADBInterrupt();
960 ExecuteNative(NATIVE_VIDEO_VBL);
961 }
962 }
963 #endif
964 #if EMUL_TIME_STATS
965 interrupt_time += (clock() - interrupt_start);
966 #endif
967 }
968 break;
969 #endif
970 }
971 }
972
973 static void get_resource(void);
974 static void get_1_resource(void);
975 static void get_ind_resource(void);
976 static void get_1_ind_resource(void);
977 static void r_get_resource(void);
978
979 // Execute NATIVE_OP routine
980 void sheepshaver_cpu::execute_native_op(uint32 selector)
981 {
982 #if EMUL_TIME_STATS
983 native_exec_count++;
984 const clock_t native_exec_start = clock();
985 #endif
986
987 switch (selector) {
988 case NATIVE_PATCH_NAME_REGISTRY:
989 DoPatchNameRegistry();
990 break;
991 case NATIVE_VIDEO_INSTALL_ACCEL:
992 VideoInstallAccel();
993 break;
994 case NATIVE_VIDEO_VBL:
995 VideoVBL();
996 break;
997 case NATIVE_VIDEO_DO_DRIVER_IO:
998 gpr(3) = (int32)(int16)VideoDoDriverIO(gpr(3), gpr(4), gpr(5), gpr(6), gpr(7));
999 break;
1000 case NATIVE_ETHER_AO_GET_HWADDR:
1001 AO_get_ethernet_address(gpr(3));
1002 break;
1003 case NATIVE_ETHER_AO_ADD_MULTI:
1004 AO_enable_multicast(gpr(3));
1005 break;
1006 case NATIVE_ETHER_AO_DEL_MULTI:
1007 AO_disable_multicast(gpr(3));
1008 break;
1009 case NATIVE_ETHER_AO_SEND_PACKET:
1010 AO_transmit_packet(gpr(3));
1011 break;
1012 case NATIVE_ETHER_IRQ:
1013 EtherIRQ();
1014 break;
1015 case NATIVE_ETHER_INIT:
1016 gpr(3) = InitStreamModule((void *)gpr(3));
1017 break;
1018 case NATIVE_ETHER_TERM:
1019 TerminateStreamModule();
1020 break;
1021 case NATIVE_ETHER_OPEN:
1022 gpr(3) = ether_open((queue_t *)gpr(3), (void *)gpr(4), gpr(5), gpr(6), (void*)gpr(7));
1023 break;
1024 case NATIVE_ETHER_CLOSE:
1025 gpr(3) = ether_close((queue_t *)gpr(3), gpr(4), (void *)gpr(5));
1026 break;
1027 case NATIVE_ETHER_WPUT:
1028 gpr(3) = ether_wput((queue_t *)gpr(3), (mblk_t *)gpr(4));
1029 break;
1030 case NATIVE_ETHER_RSRV:
1031 gpr(3) = ether_rsrv((queue_t *)gpr(3));
1032 break;
1033 case NATIVE_SYNC_HOOK:
1034 gpr(3) = NQD_sync_hook(gpr(3));
1035 break;
1036 case NATIVE_BITBLT_HOOK:
1037 gpr(3) = NQD_bitblt_hook(gpr(3));
1038 break;
1039 case NATIVE_BITBLT:
1040 NQD_bitblt(gpr(3));
1041 break;
1042 case NATIVE_FILLRECT_HOOK:
1043 gpr(3) = NQD_fillrect_hook(gpr(3));
1044 break;
1045 case NATIVE_INVRECT:
1046 NQD_invrect(gpr(3));
1047 break;
1048 case NATIVE_FILLRECT:
1049 NQD_fillrect(gpr(3));
1050 break;
1051 case NATIVE_SERIAL_NOTHING:
1052 case NATIVE_SERIAL_OPEN:
1053 case NATIVE_SERIAL_PRIME_IN:
1054 case NATIVE_SERIAL_PRIME_OUT:
1055 case NATIVE_SERIAL_CONTROL:
1056 case NATIVE_SERIAL_STATUS:
1057 case NATIVE_SERIAL_CLOSE: {
1058 typedef int16 (*SerialCallback)(uint32, uint32);
1059 static const SerialCallback serial_callbacks[] = {
1060 SerialNothing,
1061 SerialOpen,
1062 SerialPrimeIn,
1063 SerialPrimeOut,
1064 SerialControl,
1065 SerialStatus,
1066 SerialClose
1067 };
1068 gpr(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](gpr(3), gpr(4));
1069 break;
1070 }
1071 case NATIVE_GET_RESOURCE:
1072 case NATIVE_GET_1_RESOURCE:
1073 case NATIVE_GET_IND_RESOURCE:
1074 case NATIVE_GET_1_IND_RESOURCE:
1075 case NATIVE_R_GET_RESOURCE: {
1076 typedef void (*GetResourceCallback)(void);
1077 static const GetResourceCallback get_resource_callbacks[] = {
1078 ::get_resource,
1079 ::get_1_resource,
1080 ::get_ind_resource,
1081 ::get_1_ind_resource,
1082 ::r_get_resource
1083 };
1084 get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
1085 break;
1086 }
1087 case NATIVE_MAKE_EXECUTABLE:
1088 MakeExecutable(0, gpr(4), gpr(5));
1089 break;
1090 case NATIVE_CHECK_LOAD_INVOC:
1091 check_load_invoc(gpr(3), gpr(4), gpr(5));
1092 break;
1093 default:
1094 printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
1095 QuitEmulator();
1096 break;
1097 }
1098
1099 #if EMUL_TIME_STATS
1100 native_exec_time += (clock() - native_exec_start);
1101 #endif
1102 }
1103
1104 /*
1105 * Execute 68k subroutine (must be ended with EXEC_RETURN)
1106 * This must only be called by the emul_thread when in EMUL_OP mode
1107 * r->a[7] is unused, the routine runs on the caller's stack
1108 */
1109
1110 void Execute68k(uint32 pc, M68kRegisters *r)
1111 {
1112 ppc_cpu->execute_68k(pc, r);
1113 }
1114
1115 /*
1116 * Execute 68k A-Trap from EMUL_OP routine
1117 * r->a[7] is unused, the routine runs on the caller's stack
1118 */
1119
1120 void Execute68kTrap(uint16 trap, M68kRegisters *r)
1121 {
1122 SheepVar proc_var(4);
1123 uint32 proc = proc_var.addr();
1124 WriteMacInt16(proc, trap);
1125 WriteMacInt16(proc + 2, M68K_RTS);
1126 Execute68k(proc, r);
1127 }
1128
1129 /*
1130 * Call MacOS PPC code
1131 */
1132
1133 uint32 call_macos(uint32 tvect)
1134 {
1135 return ppc_cpu->execute_macos_code(tvect, 0, NULL);
1136 }
1137
1138 uint32 call_macos1(uint32 tvect, uint32 arg1)
1139 {
1140 const uint32 args[] = { arg1 };
1141 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1142 }
1143
1144 uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1145 {
1146 const uint32 args[] = { arg1, arg2 };
1147 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1148 }
1149
1150 uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1151 {
1152 const uint32 args[] = { arg1, arg2, arg3 };
1153 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1154 }
1155
1156 uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1157 {
1158 const uint32 args[] = { arg1, arg2, arg3, arg4 };
1159 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1160 }
1161
1162 uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1163 {
1164 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1165 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1166 }
1167
1168 uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1169 {
1170 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1171 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1172 }
1173
1174 uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1175 {
1176 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1177 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1178 }
1179
1180 /*
1181 * Resource Manager thunks
1182 */
1183
1184 void get_resource(void)
1185 {
1186 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1187 }
1188
1189 void get_1_resource(void)
1190 {
1191 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1192 }
1193
1194 void get_ind_resource(void)
1195 {
1196 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1197 }
1198
1199 void get_1_ind_resource(void)
1200 {
1201 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1202 }
1203
1204 void r_get_resource(void)
1205 {
1206 ppc_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1207 }