ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.69
Committed: 2006-05-13T17:12:18Z (18 years ago) by gbeauche
Branch: MAIN
Changes since 1.68: +9 -9 lines
Log Message:
NQD dirty boxes, generic code
+ while we are at it, also rename a few NQD related NativeOps.

File Contents

# Content
1 /*
2 * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3 *
4 * SheepShaver (C) 1997-2005 Christian Bauer and Marc Hellwig
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 #include "sysdeps.h"
22 #include "cpu_emulation.h"
23 #include "main.h"
24 #include "prefs.h"
25 #include "xlowmem.h"
26 #include "emul_op.h"
27 #include "rom_patches.h"
28 #include "macos_util.h"
29 #include "block-alloc.hpp"
30 #include "sigsegv.h"
31 #include "cpu/ppc/ppc-cpu.hpp"
32 #include "cpu/ppc/ppc-operations.hpp"
33 #include "cpu/ppc/ppc-instructions.hpp"
34 #include "thunks.h"
35
36 // Used for NativeOp trampolines
37 #include "video.h"
38 #include "name_registry.h"
39 #include "serial.h"
40 #include "ether.h"
41 #include "timer.h"
42
43 #include <stdio.h>
44 #include <stdlib.h>
45 #ifdef HAVE_MALLOC_H
46 #include <malloc.h>
47 #endif
48
49 #ifdef USE_SDL_VIDEO
50 #include <SDL_events.h>
51 #endif
52
53 #if ENABLE_MON
54 #include "mon.h"
55 #include "mon_disass.h"
56 #endif
57
58 #define DEBUG 0
59 #include "debug.h"
60
61 // Emulation time statistics
62 #ifndef EMUL_TIME_STATS
63 #define EMUL_TIME_STATS 0
64 #endif
65
66 #if EMUL_TIME_STATS
67 static clock_t emul_start_time;
68 static uint32 interrupt_count = 0, ppc_interrupt_count = 0;
69 static clock_t interrupt_time = 0;
70 static uint32 exec68k_count = 0;
71 static clock_t exec68k_time = 0;
72 static uint32 native_exec_count = 0;
73 static clock_t native_exec_time = 0;
74 static uint32 macos_exec_count = 0;
75 static clock_t macos_exec_time = 0;
76 #endif
77
78 static void enter_mon(void)
79 {
80 // Start up mon in real-mode
81 #if ENABLE_MON
82 char *arg[4] = {"mon", "-m", "-r", NULL};
83 mon(3, arg);
84 #endif
85 }
86
87 // From main_*.cpp
88 extern uintptr SignalStackBase();
89
90 // From rsrc_patches.cpp
91 extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
92 extern "C" void named_check_load_invoc(uint32 type, uint32 name, uint32 h);
93
94 // PowerPC EmulOp to exit from emulation looop
95 const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
96
97 // Enable Execute68k() safety checks?
98 #define SAFE_EXEC_68K 1
99
100 // Save FP state in Execute68k()?
101 #define SAVE_FP_EXEC_68K 1
102
103 // Interrupts in EMUL_OP mode?
104 #define INTERRUPTS_IN_EMUL_OP_MODE 1
105
106 // Interrupts in native mode?
107 #define INTERRUPTS_IN_NATIVE_MODE 1
108
109 // Pointer to Kernel Data
110 static KernelData * kernel_data;
111
112 // SIGSEGV handler
113 sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
114
115 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
116 // Special trampolines for EmulOp and NativeOp
117 static uint8 *emul_op_trampoline;
118 static uint8 *native_op_trampoline;
119 #endif
120
121 // JIT Compiler enabled?
122 static inline bool enable_jit_p()
123 {
124 return PrefsFindBool("jit");
125 }
126
127
128 /**
129 * PowerPC emulator glue with special 'sheep' opcodes
130 **/
131
132 enum {
133 PPC_I(SHEEP) = PPC_I(MAX),
134 PPC_I(SHEEP_MAX)
135 };
136
137 class sheepshaver_cpu
138 : public powerpc_cpu
139 {
140 void init_decoder();
141 void execute_sheep(uint32 opcode);
142
143 public:
144
145 // Constructor
146 sheepshaver_cpu();
147
148 // CR & XER accessors
149 uint32 get_cr() const { return cr().get(); }
150 void set_cr(uint32 v) { cr().set(v); }
151 uint32 get_xer() const { return xer().get(); }
152 void set_xer(uint32 v) { xer().set(v); }
153
154 // Execute NATIVE_OP routine
155 void execute_native_op(uint32 native_op);
156
157 // Execute EMUL_OP routine
158 void execute_emul_op(uint32 emul_op);
159
160 // Execute 68k routine
161 void execute_68k(uint32 entry, M68kRegisters *r);
162
163 // Execute ppc routine
164 void execute_ppc(uint32 entry);
165
166 // Execute MacOS/PPC code
167 uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
168
169 #if PPC_ENABLE_JIT
170 // Compile one instruction
171 virtual int compile1(codegen_context_t & cg_context);
172 #endif
173 // Resource manager thunk
174 void get_resource(uint32 old_get_resource);
175
176 // Handle MacOS interrupt
177 void interrupt(uint32 entry);
178
179 // Make sure the SIGSEGV handler can access CPU registers
180 friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
181 };
182
183 sheepshaver_cpu::sheepshaver_cpu()
184 : powerpc_cpu(enable_jit_p())
185 {
186 init_decoder();
187 }
188
189 void sheepshaver_cpu::init_decoder()
190 {
191 static const instr_info_t sheep_ii_table[] = {
192 { "sheep",
193 (execute_pmf)&sheepshaver_cpu::execute_sheep,
194 NULL,
195 PPC_I(SHEEP),
196 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
197 }
198 };
199
200 const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
201 D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
202
203 for (int i = 0; i < ii_count; i++) {
204 const instr_info_t * ii = &sheep_ii_table[i];
205 init_decoder_entry(ii);
206 }
207 }
208
209 /* NativeOp instruction format:
210 +------------+-------------------------+--+-----------+------------+
211 | 6 | |FN| OP | 2 |
212 +------------+-------------------------+--+-----------+------------+
213 0 5 |6 18 19 20 25 26 31
214 */
215
216 typedef bit_field< 19, 19 > FN_field;
217 typedef bit_field< 20, 25 > NATIVE_OP_field;
218 typedef bit_field< 26, 31 > EMUL_OP_field;
219
220 // Execute EMUL_OP routine
221 void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
222 {
223 M68kRegisters r68;
224 WriteMacInt32(XLM_68K_R25, gpr(25));
225 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
226 for (int i = 0; i < 8; i++)
227 r68.d[i] = gpr(8 + i);
228 for (int i = 0; i < 7; i++)
229 r68.a[i] = gpr(16 + i);
230 r68.a[7] = gpr(1);
231 uint32 saved_cr = get_cr() & 0xff9fffff; // mask_operand::compute(11, 8)
232 uint32 saved_xer = get_xer();
233 EmulOp(&r68, gpr(24), emul_op);
234 set_cr(saved_cr);
235 set_xer(saved_xer);
236 for (int i = 0; i < 8; i++)
237 gpr(8 + i) = r68.d[i];
238 for (int i = 0; i < 7; i++)
239 gpr(16 + i) = r68.a[i];
240 gpr(1) = r68.a[7];
241 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
242 }
243
244 // Execute SheepShaver instruction
245 void sheepshaver_cpu::execute_sheep(uint32 opcode)
246 {
247 // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
248 assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
249
250 switch (opcode & 0x3f) {
251 case 0: // EMUL_RETURN
252 QuitEmulator();
253 break;
254
255 case 1: // EXEC_RETURN
256 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
257 break;
258
259 case 2: // EXEC_NATIVE
260 execute_native_op(NATIVE_OP_field::extract(opcode));
261 if (FN_field::test(opcode))
262 pc() = lr();
263 else
264 pc() += 4;
265 break;
266
267 default: // EMUL_OP
268 execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
269 pc() += 4;
270 break;
271 }
272 }
273
274 // Compile one instruction
275 #if PPC_ENABLE_JIT
276 int sheepshaver_cpu::compile1(codegen_context_t & cg_context)
277 {
278 const instr_info_t *ii = cg_context.instr_info;
279 if (ii->mnemo != PPC_I(SHEEP))
280 return COMPILE_FAILURE;
281
282 int status = COMPILE_FAILURE;
283 powerpc_dyngen & dg = cg_context.codegen;
284 uint32 opcode = cg_context.opcode;
285
286 switch (opcode & 0x3f) {
287 case 0: // EMUL_RETURN
288 dg.gen_invoke(QuitEmulator);
289 status = COMPILE_CODE_OK;
290 break;
291
292 case 1: // EXEC_RETURN
293 dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
294 // Don't check for pending interrupts, we do know we have to
295 // get out of this block ASAP
296 dg.gen_exec_return();
297 status = COMPILE_EPILOGUE_OK;
298 break;
299
300 case 2: { // EXEC_NATIVE
301 uint32 selector = NATIVE_OP_field::extract(opcode);
302 switch (selector) {
303 #if !PPC_REENTRANT_JIT
304 // Filter out functions that may invoke Execute68k() or
305 // CallMacOS(), this would break reentrancy as they could
306 // invalidate the translation cache and even overwrite
307 // continuation code when we are done with them.
308 case NATIVE_PATCH_NAME_REGISTRY:
309 dg.gen_invoke(DoPatchNameRegistry);
310 status = COMPILE_CODE_OK;
311 break;
312 case NATIVE_VIDEO_INSTALL_ACCEL:
313 dg.gen_invoke(VideoInstallAccel);
314 status = COMPILE_CODE_OK;
315 break;
316 case NATIVE_VIDEO_VBL:
317 dg.gen_invoke(VideoVBL);
318 status = COMPILE_CODE_OK;
319 break;
320 case NATIVE_GET_RESOURCE:
321 case NATIVE_GET_1_RESOURCE:
322 case NATIVE_GET_IND_RESOURCE:
323 case NATIVE_GET_1_IND_RESOURCE:
324 case NATIVE_R_GET_RESOURCE: {
325 static const uint32 get_resource_ptr[] = {
326 XLM_GET_RESOURCE,
327 XLM_GET_1_RESOURCE,
328 XLM_GET_IND_RESOURCE,
329 XLM_GET_1_IND_RESOURCE,
330 XLM_R_GET_RESOURCE
331 };
332 uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
333 typedef void (*func_t)(dyngen_cpu_base, uint32);
334 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
335 dg.gen_invoke_CPU_im(func, old_get_resource);
336 status = COMPILE_CODE_OK;
337 break;
338 }
339 case NATIVE_CHECK_LOAD_INVOC:
340 dg.gen_load_T0_GPR(3);
341 dg.gen_load_T1_GPR(4);
342 dg.gen_se_16_32_T1();
343 dg.gen_load_T2_GPR(5);
344 dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
345 status = COMPILE_CODE_OK;
346 break;
347 case NATIVE_NAMED_CHECK_LOAD_INVOC:
348 dg.gen_load_T0_GPR(3);
349 dg.gen_load_T1_GPR(4);
350 dg.gen_load_T2_GPR(5);
351 dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))named_check_load_invoc);
352 status = COMPILE_CODE_OK;
353 break;
354 #endif
355 case NATIVE_NQD_BITBLT:
356 dg.gen_load_T0_GPR(3);
357 dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt);
358 status = COMPILE_CODE_OK;
359 break;
360 case NATIVE_NQD_INVRECT:
361 dg.gen_load_T0_GPR(3);
362 dg.gen_invoke_T0((void (*)(uint32))NQD_invrect);
363 status = COMPILE_CODE_OK;
364 break;
365 case NATIVE_NQD_FILLRECT:
366 dg.gen_load_T0_GPR(3);
367 dg.gen_invoke_T0((void (*)(uint32))NQD_fillrect);
368 status = COMPILE_CODE_OK;
369 break;
370 }
371 // Could we fully translate this NativeOp?
372 if (status == COMPILE_CODE_OK) {
373 if (!FN_field::test(opcode))
374 cg_context.done_compile = false;
375 else {
376 dg.gen_load_A0_LR();
377 dg.gen_set_PC_A0();
378 cg_context.done_compile = true;
379 }
380 break;
381 }
382 #if PPC_REENTRANT_JIT
383 // Try to execute NativeOp trampoline
384 if (!FN_field::test(opcode))
385 dg.gen_set_PC_im(cg_context.pc + 4);
386 else {
387 dg.gen_load_A0_LR();
388 dg.gen_set_PC_A0();
389 }
390 dg.gen_mov_32_T0_im(selector);
391 dg.gen_jmp(native_op_trampoline);
392 cg_context.done_compile = true;
393 status = COMPILE_EPILOGUE_OK;
394 break;
395 #endif
396 // Invoke NativeOp handler
397 if (!FN_field::test(opcode)) {
398 typedef void (*func_t)(dyngen_cpu_base, uint32);
399 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
400 dg.gen_invoke_CPU_im(func, selector);
401 cg_context.done_compile = false;
402 status = COMPILE_CODE_OK;
403 }
404 // Otherwise, let it generate a call to execute_sheep() which
405 // will cause necessary updates to the program counter
406 break;
407 }
408
409 default: { // EMUL_OP
410 uint32 emul_op = EMUL_OP_field::extract(opcode) - 3;
411 #if PPC_REENTRANT_JIT
412 // Try to execute EmulOp trampoline
413 dg.gen_set_PC_im(cg_context.pc + 4);
414 dg.gen_mov_32_T0_im(emul_op);
415 dg.gen_jmp(emul_op_trampoline);
416 cg_context.done_compile = true;
417 status = COMPILE_EPILOGUE_OK;
418 break;
419 #endif
420 // Invoke EmulOp handler
421 typedef void (*func_t)(dyngen_cpu_base, uint32);
422 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
423 dg.gen_invoke_CPU_im(func, emul_op);
424 cg_context.done_compile = false;
425 status = COMPILE_CODE_OK;
426 break;
427 }
428 }
429 return status;
430 }
431 #endif
432
433 // Handle MacOS interrupt
434 void sheepshaver_cpu::interrupt(uint32 entry)
435 {
436 #if EMUL_TIME_STATS
437 ppc_interrupt_count++;
438 const clock_t interrupt_start = clock();
439 #endif
440
441 // Save program counters and branch registers
442 uint32 saved_pc = pc();
443 uint32 saved_lr = lr();
444 uint32 saved_ctr= ctr();
445 uint32 saved_sp = gpr(1);
446
447 // Initialize stack pointer to SheepShaver alternate stack base
448 gpr(1) = SignalStackBase() - 64;
449
450 // Build trampoline to return from interrupt
451 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
452
453 // Prepare registers for nanokernel interrupt routine
454 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
455 kernel_data->v[0x018 >> 2] = htonl(gpr(6));
456
457 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
458 assert(gpr(6) != 0);
459 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
460 WriteMacInt32(gpr(6) + 0x144, gpr(8));
461 WriteMacInt32(gpr(6) + 0x14c, gpr(9));
462 WriteMacInt32(gpr(6) + 0x154, gpr(10));
463 WriteMacInt32(gpr(6) + 0x15c, gpr(11));
464 WriteMacInt32(gpr(6) + 0x164, gpr(12));
465 WriteMacInt32(gpr(6) + 0x16c, gpr(13));
466
467 gpr(1) = KernelDataAddr;
468 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
469 gpr(8) = 0;
470 gpr(10) = trampoline.addr();
471 gpr(12) = trampoline.addr();
472 gpr(13) = get_cr();
473
474 // rlwimi. r7,r7,8,0,0
475 uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
476 record_cr0(result);
477 gpr(7) = result;
478
479 gpr(11) = 0xf072; // MSR (SRR1)
480 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
481
482 // Enter nanokernel
483 execute(entry);
484
485 // Restore program counters and branch registers
486 pc() = saved_pc;
487 lr() = saved_lr;
488 ctr()= saved_ctr;
489 gpr(1) = saved_sp;
490
491 #if EMUL_TIME_STATS
492 interrupt_time += (clock() - interrupt_start);
493 #endif
494 }
495
496 // Execute 68k routine
497 void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
498 {
499 #if EMUL_TIME_STATS
500 exec68k_count++;
501 const clock_t exec68k_start = clock();
502 #endif
503
504 #if SAFE_EXEC_68K
505 if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
506 printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
507 #endif
508
509 // Save program counters and branch registers
510 uint32 saved_pc = pc();
511 uint32 saved_lr = lr();
512 uint32 saved_ctr= ctr();
513 uint32 saved_cr = get_cr();
514
515 // Create MacOS stack frame
516 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
517 uint32 sp = gpr(1);
518 gpr(1) -= 56;
519 WriteMacInt32(gpr(1), sp);
520
521 // Save PowerPC registers
522 uint32 saved_GPRs[19];
523 memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
524 #if SAVE_FP_EXEC_68K
525 double saved_FPRs[18];
526 memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
527 #endif
528
529 // Setup registers for 68k emulator
530 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
531 for (int i = 0; i < 8; i++) // d[0]..d[7]
532 gpr(8 + i) = r->d[i];
533 for (int i = 0; i < 7; i++) // a[0]..a[6]
534 gpr(16 + i) = r->a[i];
535 gpr(23) = 0;
536 gpr(24) = entry;
537 gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
538 gpr(26) = 0;
539 gpr(28) = 0; // VBR
540 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
541 gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
542 gpr(31) = KernelDataAddr + 0x1000;
543
544 // Push return address (points to EXEC_RETURN opcode) on stack
545 gpr(1) -= 4;
546 WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
547
548 // Rentering 68k emulator
549 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
550
551 // Set r0 to 0 for 68k emulator
552 gpr(0) = 0;
553
554 // Execute 68k opcode
555 uint32 opcode = ReadMacInt16(gpr(24));
556 gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
557 gpr(29) += opcode * 8;
558 execute(gpr(29));
559
560 // Save r25 (contains current 68k interrupt level)
561 WriteMacInt32(XLM_68K_R25, gpr(25));
562
563 // Reentering EMUL_OP mode
564 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
565
566 // Save 68k registers
567 for (int i = 0; i < 8; i++) // d[0]..d[7]
568 r->d[i] = gpr(8 + i);
569 for (int i = 0; i < 7; i++) // a[0]..a[6]
570 r->a[i] = gpr(16 + i);
571
572 // Restore PowerPC registers
573 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
574 #if SAVE_FP_EXEC_68K
575 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
576 #endif
577
578 // Cleanup stack
579 gpr(1) += 56;
580
581 // Restore program counters and branch registers
582 pc() = saved_pc;
583 lr() = saved_lr;
584 ctr()= saved_ctr;
585 set_cr(saved_cr);
586
587 #if EMUL_TIME_STATS
588 exec68k_time += (clock() - exec68k_start);
589 #endif
590 }
591
592 // Call MacOS PPC code
593 uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
594 {
595 #if EMUL_TIME_STATS
596 macos_exec_count++;
597 const clock_t macos_exec_start = clock();
598 #endif
599
600 // Save program counters and branch registers
601 uint32 saved_pc = pc();
602 uint32 saved_lr = lr();
603 uint32 saved_ctr= ctr();
604
605 // Build trampoline with EXEC_RETURN
606 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
607 lr() = trampoline.addr();
608
609 gpr(1) -= 64; // Create stack frame
610 uint32 proc = ReadMacInt32(tvect); // Get routine address
611 uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
612
613 // Save PowerPC registers
614 uint32 regs[8];
615 regs[0] = gpr(2);
616 for (int i = 0; i < nargs; i++)
617 regs[i + 1] = gpr(i + 3);
618
619 // Prepare and call MacOS routine
620 gpr(2) = toc;
621 for (int i = 0; i < nargs; i++)
622 gpr(i + 3) = args[i];
623 execute(proc);
624 uint32 retval = gpr(3);
625
626 // Restore PowerPC registers
627 for (int i = 0; i <= nargs; i++)
628 gpr(i + 2) = regs[i];
629
630 // Cleanup stack
631 gpr(1) += 64;
632
633 // Restore program counters and branch registers
634 pc() = saved_pc;
635 lr() = saved_lr;
636 ctr()= saved_ctr;
637
638 #if EMUL_TIME_STATS
639 macos_exec_time += (clock() - macos_exec_start);
640 #endif
641
642 return retval;
643 }
644
645 // Execute ppc routine
646 inline void sheepshaver_cpu::execute_ppc(uint32 entry)
647 {
648 // Save branch registers
649 uint32 saved_lr = lr();
650
651 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
652 WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
653 lr() = trampoline.addr();
654
655 execute(entry);
656
657 // Restore branch registers
658 lr() = saved_lr;
659 }
660
661 // Resource Manager thunk
662 inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
663 {
664 uint32 type = gpr(3);
665 int16 id = gpr(4);
666
667 // Create stack frame
668 gpr(1) -= 56;
669
670 // Call old routine
671 execute_ppc(old_get_resource);
672
673 // Call CheckLoad()
674 uint32 handle = gpr(3);
675 check_load_invoc(type, id, handle);
676 gpr(3) = handle;
677
678 // Cleanup stack
679 gpr(1) += 56;
680 }
681
682
683 /**
684 * SheepShaver CPU engine interface
685 **/
686
687 // PowerPC CPU emulator
688 static sheepshaver_cpu *ppc_cpu = NULL;
689
690 void FlushCodeCache(uintptr start, uintptr end)
691 {
692 D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
693 ppc_cpu->invalidate_cache_range(start, end);
694 }
695
696 // Dump PPC registers
697 static void dump_registers(void)
698 {
699 ppc_cpu->dump_registers();
700 }
701
702 // Dump log
703 static void dump_log(void)
704 {
705 ppc_cpu->dump_log();
706 }
707
708 /*
709 * Initialize CPU emulation
710 */
711
712 sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
713 {
714 #if ENABLE_VOSF
715 // Handle screen fault
716 extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
717 if (Screen_fault_handler(fault_address, fault_instruction))
718 return SIGSEGV_RETURN_SUCCESS;
719 #endif
720
721 const uintptr addr = (uintptr)fault_address;
722 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
723 // Ignore writes to ROM
724 if ((addr - (uintptr)ROMBaseHost) < ROM_SIZE)
725 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
726
727 // Get program counter of target CPU
728 sheepshaver_cpu * const cpu = ppc_cpu;
729 const uint32 pc = cpu->pc();
730
731 // Fault in Mac ROM or RAM?
732 bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize)) || (pc >= DR_CACHE_BASE && pc < (DR_CACHE_BASE + DR_CACHE_SIZE));
733 if (mac_fault) {
734
735 // "VM settings" during MacOS 8 installation
736 if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
737 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
738
739 // MacOS 8.5 installation
740 else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
741 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
742
743 // MacOS 8 serial drivers on startup
744 else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
745 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
746
747 // MacOS 8.1 serial drivers on startup
748 else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
749 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
750 else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
751 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
752
753 // MacOS 8.6 serial drivers on startup (with DR Cache and OldWorld ROM)
754 else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(16) == 0xf3012002 || cpu->gpr(16) == 0xf3012000))
755 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
756 else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
757 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
758
759 // Ignore writes to the zero page
760 else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
761 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
762
763 // Ignore all other faults, if requested
764 if (PrefsFindBool("ignoresegv"))
765 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
766 }
767 #else
768 #error "FIXME: You don't have the capability to skip instruction within signal handlers"
769 #endif
770
771 fprintf(stderr, "SIGSEGV\n");
772 fprintf(stderr, " pc %p\n", fault_instruction);
773 fprintf(stderr, " ea %p\n", fault_address);
774 dump_registers();
775 ppc_cpu->dump_log();
776 enter_mon();
777 QuitEmulator();
778
779 return SIGSEGV_RETURN_FAILURE;
780 }
781
782 void init_emul_ppc(void)
783 {
784 // Get pointer to KernelData in host address space
785 kernel_data = (KernelData *)Mac2HostAddr(KERNEL_DATA_BASE);
786
787 // Initialize main CPU emulator
788 ppc_cpu = new sheepshaver_cpu();
789 ppc_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
790 ppc_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
791 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
792
793 #if ENABLE_MON
794 // Install "regs" command in cxmon
795 mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
796 mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
797 #endif
798
799 #if EMUL_TIME_STATS
800 emul_start_time = clock();
801 #endif
802 }
803
804 /*
805 * Deinitialize emulation
806 */
807
808 void exit_emul_ppc(void)
809 {
810 #if EMUL_TIME_STATS
811 clock_t emul_end_time = clock();
812
813 printf("### Statistics for SheepShaver emulation parts\n");
814 const clock_t emul_time = emul_end_time - emul_start_time;
815 printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
816 printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
817 (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
818 printf("Total ppc interrupt count: %d (%2.1f %%)\n", ppc_interrupt_count,
819 (double(ppc_interrupt_count) * 100.0) / double(interrupt_count));
820
821 #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
822 printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
823 printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
824 double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
825 100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
826 } while (0)
827
828 PRINT_STATS("Execute68k[Trap] execution", exec68k);
829 PRINT_STATS("NativeOp execution", native_exec);
830 PRINT_STATS("MacOS routine execution", macos_exec);
831
832 #undef PRINT_STATS
833 printf("\n");
834 #endif
835
836 delete ppc_cpu;
837 ppc_cpu = NULL;
838 }
839
840 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
841 // Initialize EmulOp trampolines
842 void init_emul_op_trampolines(basic_dyngen & dg)
843 {
844 typedef void (*func_t)(dyngen_cpu_base, uint32);
845 func_t func;
846
847 // EmulOp
848 emul_op_trampoline = dg.gen_start();
849 func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
850 dg.gen_invoke_CPU_T0(func);
851 dg.gen_exec_return();
852 dg.gen_end();
853
854 // NativeOp
855 native_op_trampoline = dg.gen_start();
856 func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
857 dg.gen_invoke_CPU_T0(func);
858 dg.gen_exec_return();
859 dg.gen_end();
860
861 D(bug("EmulOp trampoline: %p\n", emul_op_trampoline));
862 D(bug("NativeOp trampoline: %p\n", native_op_trampoline));
863 }
864 #endif
865
866 /*
867 * Emulation loop
868 */
869
870 void emul_ppc(uint32 entry)
871 {
872 #if 0
873 ppc_cpu->start_log();
874 #endif
875 // start emulation loop and enable code translation or caching
876 ppc_cpu->execute(entry);
877 }
878
879 /*
880 * Handle PowerPC interrupt
881 */
882
883 void TriggerInterrupt(void)
884 {
885 idle_resume();
886 #if 0
887 WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
888 #else
889 // Trigger interrupt to main cpu only
890 if (ppc_cpu)
891 ppc_cpu->trigger_interrupt();
892 #endif
893 }
894
895 void HandleInterrupt(powerpc_registers *r)
896 {
897 #ifdef USE_SDL_VIDEO
898 // We must fill in the events queue in the same thread that did call SDL_SetVideoMode()
899 SDL_PumpEvents();
900 #endif
901
902 // Do nothing if interrupts are disabled
903 if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0)
904 return;
905
906 // Update interrupt count
907 #if EMUL_TIME_STATS
908 interrupt_count++;
909 #endif
910
911 // Interrupt action depends on current run mode
912 switch (ReadMacInt32(XLM_RUN_MODE)) {
913 case MODE_68K:
914 // 68k emulator active, trigger 68k interrupt level 1
915 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
916 r->cr.set(r->cr.get() | tswap32(kernel_data->v[0x674 >> 2]));
917 break;
918
919 #if INTERRUPTS_IN_NATIVE_MODE
920 case MODE_NATIVE:
921 // 68k emulator inactive, in nanokernel?
922 if (r->gpr[1] != KernelDataAddr) {
923
924 // Prepare for 68k interrupt level 1
925 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
926 WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
927 ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
928 | tswap32(kernel_data->v[0x674 >> 2]));
929
930 // Execute nanokernel interrupt routine (this will activate the 68k emulator)
931 DisableInterrupt();
932 if (ROMType == ROMTYPE_NEWWORLD)
933 ppc_cpu->interrupt(ROM_BASE + 0x312b1c);
934 else
935 ppc_cpu->interrupt(ROM_BASE + 0x312a3c);
936 }
937 break;
938 #endif
939
940 #if INTERRUPTS_IN_EMUL_OP_MODE
941 case MODE_EMUL_OP:
942 // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
943 if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
944 #if EMUL_TIME_STATS
945 const clock_t interrupt_start = clock();
946 #endif
947 #if 1
948 // Execute full 68k interrupt routine
949 M68kRegisters r;
950 uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
951 WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
952 static const uint8 proc_template[] = {
953 0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
954 0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
955 0x40, 0xe7, // move sr,-(sp) (saved SR)
956 0x20, 0x78, 0x00, 0x064, // move.l $64,a0
957 0x4e, 0xd0, // jmp (a0)
958 M68K_RTS >> 8, M68K_RTS & 0xff // @1
959 };
960 BUILD_SHEEPSHAVER_PROCEDURE(proc);
961 Execute68k(proc, &r);
962 WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
963 #else
964 // Only update cursor
965 if (HasMacStarted()) {
966 if (InterruptFlags & INTFLAG_VIA) {
967 ClearInterruptFlag(INTFLAG_VIA);
968 ADBInterrupt();
969 ExecuteNative(NATIVE_VIDEO_VBL);
970 }
971 }
972 #endif
973 #if EMUL_TIME_STATS
974 interrupt_time += (clock() - interrupt_start);
975 #endif
976 }
977 break;
978 #endif
979 }
980 }
981
982 // Execute NATIVE_OP routine
983 void sheepshaver_cpu::execute_native_op(uint32 selector)
984 {
985 #if EMUL_TIME_STATS
986 native_exec_count++;
987 const clock_t native_exec_start = clock();
988 #endif
989
990 switch (selector) {
991 case NATIVE_PATCH_NAME_REGISTRY:
992 DoPatchNameRegistry();
993 break;
994 case NATIVE_VIDEO_INSTALL_ACCEL:
995 VideoInstallAccel();
996 break;
997 case NATIVE_VIDEO_VBL:
998 VideoVBL();
999 break;
1000 case NATIVE_VIDEO_DO_DRIVER_IO:
1001 gpr(3) = (int32)(int16)VideoDoDriverIO(gpr(3), gpr(4), gpr(5), gpr(6), gpr(7));
1002 break;
1003 case NATIVE_ETHER_AO_GET_HWADDR:
1004 AO_get_ethernet_address(gpr(3));
1005 break;
1006 case NATIVE_ETHER_AO_ADD_MULTI:
1007 AO_enable_multicast(gpr(3));
1008 break;
1009 case NATIVE_ETHER_AO_DEL_MULTI:
1010 AO_disable_multicast(gpr(3));
1011 break;
1012 case NATIVE_ETHER_AO_SEND_PACKET:
1013 AO_transmit_packet(gpr(3));
1014 break;
1015 case NATIVE_ETHER_IRQ:
1016 EtherIRQ();
1017 break;
1018 case NATIVE_ETHER_INIT:
1019 gpr(3) = InitStreamModule((void *)gpr(3));
1020 break;
1021 case NATIVE_ETHER_TERM:
1022 TerminateStreamModule();
1023 break;
1024 case NATIVE_ETHER_OPEN:
1025 gpr(3) = ether_open((queue_t *)gpr(3), (void *)gpr(4), gpr(5), gpr(6), (void*)gpr(7));
1026 break;
1027 case NATIVE_ETHER_CLOSE:
1028 gpr(3) = ether_close((queue_t *)gpr(3), gpr(4), (void *)gpr(5));
1029 break;
1030 case NATIVE_ETHER_WPUT:
1031 gpr(3) = ether_wput((queue_t *)gpr(3), (mblk_t *)gpr(4));
1032 break;
1033 case NATIVE_ETHER_RSRV:
1034 gpr(3) = ether_rsrv((queue_t *)gpr(3));
1035 break;
1036 case NATIVE_NQD_SYNC_HOOK:
1037 gpr(3) = NQD_sync_hook(gpr(3));
1038 break;
1039 case NATIVE_NQD_BITBLT_HOOK:
1040 gpr(3) = NQD_bitblt_hook(gpr(3));
1041 break;
1042 case NATIVE_NQD_BITBLT:
1043 NQD_bitblt(gpr(3));
1044 break;
1045 case NATIVE_NQD_FILLRECT_HOOK:
1046 gpr(3) = NQD_fillrect_hook(gpr(3));
1047 break;
1048 case NATIVE_NQD_INVRECT:
1049 NQD_invrect(gpr(3));
1050 break;
1051 case NATIVE_NQD_FILLRECT:
1052 NQD_fillrect(gpr(3));
1053 break;
1054 case NATIVE_SERIAL_NOTHING:
1055 case NATIVE_SERIAL_OPEN:
1056 case NATIVE_SERIAL_PRIME_IN:
1057 case NATIVE_SERIAL_PRIME_OUT:
1058 case NATIVE_SERIAL_CONTROL:
1059 case NATIVE_SERIAL_STATUS:
1060 case NATIVE_SERIAL_CLOSE: {
1061 typedef int16 (*SerialCallback)(uint32, uint32);
1062 static const SerialCallback serial_callbacks[] = {
1063 SerialNothing,
1064 SerialOpen,
1065 SerialPrimeIn,
1066 SerialPrimeOut,
1067 SerialControl,
1068 SerialStatus,
1069 SerialClose
1070 };
1071 gpr(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](gpr(3), gpr(4));
1072 break;
1073 }
1074 case NATIVE_GET_RESOURCE:
1075 get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1076 break;
1077 case NATIVE_GET_1_RESOURCE:
1078 get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1079 break;
1080 case NATIVE_GET_IND_RESOURCE:
1081 get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1082 break;
1083 case NATIVE_GET_1_IND_RESOURCE:
1084 get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1085 break;
1086 case NATIVE_R_GET_RESOURCE:
1087 get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1088 break;
1089 case NATIVE_MAKE_EXECUTABLE:
1090 MakeExecutable(0, gpr(4), gpr(5));
1091 break;
1092 case NATIVE_CHECK_LOAD_INVOC:
1093 check_load_invoc(gpr(3), gpr(4), gpr(5));
1094 break;
1095 case NATIVE_NAMED_CHECK_LOAD_INVOC:
1096 named_check_load_invoc(gpr(3), gpr(4), gpr(5));
1097 break;
1098 default:
1099 printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
1100 QuitEmulator();
1101 break;
1102 }
1103
1104 #if EMUL_TIME_STATS
1105 native_exec_time += (clock() - native_exec_start);
1106 #endif
1107 }
1108
1109 /*
1110 * Execute 68k subroutine (must be ended with EXEC_RETURN)
1111 * This must only be called by the emul_thread when in EMUL_OP mode
1112 * r->a[7] is unused, the routine runs on the caller's stack
1113 */
1114
1115 void Execute68k(uint32 pc, M68kRegisters *r)
1116 {
1117 ppc_cpu->execute_68k(pc, r);
1118 }
1119
1120 /*
1121 * Execute 68k A-Trap from EMUL_OP routine
1122 * r->a[7] is unused, the routine runs on the caller's stack
1123 */
1124
1125 void Execute68kTrap(uint16 trap, M68kRegisters *r)
1126 {
1127 SheepVar proc_var(4);
1128 uint32 proc = proc_var.addr();
1129 WriteMacInt16(proc, trap);
1130 WriteMacInt16(proc + 2, M68K_RTS);
1131 Execute68k(proc, r);
1132 }
1133
1134 /*
1135 * Call MacOS PPC code
1136 */
1137
1138 uint32 call_macos(uint32 tvect)
1139 {
1140 return ppc_cpu->execute_macos_code(tvect, 0, NULL);
1141 }
1142
1143 uint32 call_macos1(uint32 tvect, uint32 arg1)
1144 {
1145 const uint32 args[] = { arg1 };
1146 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1147 }
1148
1149 uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1150 {
1151 const uint32 args[] = { arg1, arg2 };
1152 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1153 }
1154
1155 uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1156 {
1157 const uint32 args[] = { arg1, arg2, arg3 };
1158 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1159 }
1160
1161 uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1162 {
1163 const uint32 args[] = { arg1, arg2, arg3, arg4 };
1164 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1165 }
1166
1167 uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1168 {
1169 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1170 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1171 }
1172
1173 uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1174 {
1175 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1176 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1177 }
1178
1179 uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1180 {
1181 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1182 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1183 }