ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.77
Committed: 2012-06-16T02:16:40Z (11 years, 10 months ago) by asvitkine
Branch: MAIN
CVS Tags: HEAD
Changes since 1.76: +31 -3 lines
Log Message:
Dump PPC disassembly on crash

File Contents

# Content
1 /*
2 * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3 *
4 * SheepShaver (C) 1997-2008 Christian Bauer and Marc Hellwig
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 #include "sysdeps.h"
22 #include "cpu_emulation.h"
23 #include "main.h"
24 #include "prefs.h"
25 #include "xlowmem.h"
26 #include "emul_op.h"
27 #include "rom_patches.h"
28 #include "macos_util.h"
29 #include "block-alloc.hpp"
30 #include "sigsegv.h"
31 #include "cpu/ppc/ppc-cpu.hpp"
32 #include "cpu/ppc/ppc-operations.hpp"
33 #include "cpu/ppc/ppc-instructions.hpp"
34 #include "thunks.h"
35
36 // Used for NativeOp trampolines
37 #include "video.h"
38 #include "name_registry.h"
39 #include "serial.h"
40 #include "ether.h"
41 #include "timer.h"
42
43 #include <stdio.h>
44 #include <stdlib.h>
45 #ifdef HAVE_MALLOC_H
46 #include <malloc.h>
47 #endif
48
49 #ifdef USE_SDL_VIDEO
50 #include <SDL_events.h>
51 #endif
52
53 #if ENABLE_MON
54 #include "mon.h"
55 #include "mon_disass.h"
56 #endif
57
58 #define DEBUG 0
59 #include "debug.h"
60
61 extern "C" {
62 #include "dis-asm.h"
63 }
64
65 // Emulation time statistics
66 #ifndef EMUL_TIME_STATS
67 #define EMUL_TIME_STATS 0
68 #endif
69
70 #if EMUL_TIME_STATS
71 static clock_t emul_start_time;
72 static uint32 interrupt_count = 0, ppc_interrupt_count = 0;
73 static clock_t interrupt_time = 0;
74 static uint32 exec68k_count = 0;
75 static clock_t exec68k_time = 0;
76 static uint32 native_exec_count = 0;
77 static clock_t native_exec_time = 0;
78 static uint32 macos_exec_count = 0;
79 static clock_t macos_exec_time = 0;
80 #endif
81
82 static void enter_mon(void)
83 {
84 // Start up mon in real-mode
85 #if ENABLE_MON
86 char *arg[4] = {"mon", "-m", "-r", NULL};
87 mon(3, arg);
88 #endif
89 }
90
91 // From main_*.cpp
92 extern uintptr SignalStackBase();
93
94 // From rsrc_patches.cpp
95 extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
96 extern "C" void named_check_load_invoc(uint32 type, uint32 name, uint32 h);
97
98 // PowerPC EmulOp to exit from emulation looop
99 const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
100
101 // Enable Execute68k() safety checks?
102 #define SAFE_EXEC_68K 1
103
104 // Save FP state in Execute68k()?
105 #define SAVE_FP_EXEC_68K 1
106
107 // Interrupts in EMUL_OP mode?
108 #define INTERRUPTS_IN_EMUL_OP_MODE 1
109
110 // Interrupts in native mode?
111 #define INTERRUPTS_IN_NATIVE_MODE 1
112
113 // Pointer to Kernel Data
114 static KernelData * kernel_data;
115
116 // SIGSEGV handler
117 sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
118
119 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
120 // Special trampolines for EmulOp and NativeOp
121 static uint8 *emul_op_trampoline;
122 static uint8 *native_op_trampoline;
123 #endif
124
125
126 /**
127 * PowerPC emulator glue with special 'sheep' opcodes
128 **/
129
130 enum {
131 PPC_I(SHEEP) = PPC_I(MAX),
132 PPC_I(SHEEP_MAX)
133 };
134
135 class sheepshaver_cpu
136 : public powerpc_cpu
137 {
138 void init_decoder();
139 void execute_sheep(uint32 opcode);
140
141 public:
142
143 // Constructor
144 sheepshaver_cpu();
145
146 // CR & XER accessors
147 uint32 get_cr() const { return cr().get(); }
148 void set_cr(uint32 v) { cr().set(v); }
149 uint32 get_xer() const { return xer().get(); }
150 void set_xer(uint32 v) { xer().set(v); }
151
152 // Execute NATIVE_OP routine
153 void execute_native_op(uint32 native_op);
154
155 // Execute EMUL_OP routine
156 void execute_emul_op(uint32 emul_op);
157
158 // Execute 68k routine
159 void execute_68k(uint32 entry, M68kRegisters *r);
160
161 // Execute ppc routine
162 void execute_ppc(uint32 entry);
163
164 // Execute MacOS/PPC code
165 uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
166
167 #if PPC_ENABLE_JIT
168 // Compile one instruction
169 virtual int compile1(codegen_context_t & cg_context);
170 #endif
171 // Resource manager thunk
172 void get_resource(uint32 old_get_resource);
173
174 // Handle MacOS interrupt
175 void interrupt(uint32 entry);
176
177 // Make sure the SIGSEGV handler can access CPU registers
178 friend sigsegv_return_t sigsegv_handler(sigsegv_info_t *sip);
179 };
180
181 sheepshaver_cpu::sheepshaver_cpu()
182 {
183 init_decoder();
184
185 #if PPC_ENABLE_JIT
186 if (PrefsFindBool("jit"))
187 enable_jit();
188 #endif
189 }
190
191 void sheepshaver_cpu::init_decoder()
192 {
193 static const instr_info_t sheep_ii_table[] = {
194 { "sheep",
195 (execute_pmf)&sheepshaver_cpu::execute_sheep,
196 PPC_I(SHEEP),
197 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
198 }
199 };
200
201 const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
202 D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
203
204 for (int i = 0; i < ii_count; i++) {
205 const instr_info_t * ii = &sheep_ii_table[i];
206 init_decoder_entry(ii);
207 }
208 }
209
210 /* NativeOp instruction format:
211 +------------+-------------------------+--+-----------+------------+
212 | 6 | |FN| OP | 2 |
213 +------------+-------------------------+--+-----------+------------+
214 0 5 |6 18 19 20 25 26 31
215 */
216
217 typedef bit_field< 19, 19 > FN_field;
218 typedef bit_field< 20, 25 > NATIVE_OP_field;
219 typedef bit_field< 26, 31 > EMUL_OP_field;
220
221 // Execute EMUL_OP routine
222 void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
223 {
224 M68kRegisters r68;
225 WriteMacInt32(XLM_68K_R25, gpr(25));
226 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
227 for (int i = 0; i < 8; i++)
228 r68.d[i] = gpr(8 + i);
229 for (int i = 0; i < 7; i++)
230 r68.a[i] = gpr(16 + i);
231 r68.a[7] = gpr(1);
232 uint32 saved_cr = get_cr() & 0xff9fffff; // mask_operand::compute(11, 8)
233 uint32 saved_xer = get_xer();
234 EmulOp(&r68, gpr(24), emul_op);
235 set_cr(saved_cr);
236 set_xer(saved_xer);
237 for (int i = 0; i < 8; i++)
238 gpr(8 + i) = r68.d[i];
239 for (int i = 0; i < 7; i++)
240 gpr(16 + i) = r68.a[i];
241 gpr(1) = r68.a[7];
242 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
243 }
244
245 // Execute SheepShaver instruction
246 void sheepshaver_cpu::execute_sheep(uint32 opcode)
247 {
248 // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
249 assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
250
251 switch (opcode & 0x3f) {
252 case 0: // EMUL_RETURN
253 QuitEmulator();
254 break;
255
256 case 1: // EXEC_RETURN
257 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
258 break;
259
260 case 2: // EXEC_NATIVE
261 execute_native_op(NATIVE_OP_field::extract(opcode));
262 if (FN_field::test(opcode))
263 pc() = lr();
264 else
265 pc() += 4;
266 break;
267
268 default: // EMUL_OP
269 execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
270 pc() += 4;
271 break;
272 }
273 }
274
275 // Compile one instruction
276 #if PPC_ENABLE_JIT
277 int sheepshaver_cpu::compile1(codegen_context_t & cg_context)
278 {
279 const instr_info_t *ii = cg_context.instr_info;
280 if (ii->mnemo != PPC_I(SHEEP))
281 return COMPILE_FAILURE;
282
283 int status = COMPILE_FAILURE;
284 powerpc_dyngen & dg = cg_context.codegen;
285 uint32 opcode = cg_context.opcode;
286
287 switch (opcode & 0x3f) {
288 case 0: // EMUL_RETURN
289 dg.gen_invoke(QuitEmulator);
290 status = COMPILE_CODE_OK;
291 break;
292
293 case 1: // EXEC_RETURN
294 dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
295 // Don't check for pending interrupts, we do know we have to
296 // get out of this block ASAP
297 dg.gen_exec_return();
298 status = COMPILE_EPILOGUE_OK;
299 break;
300
301 case 2: { // EXEC_NATIVE
302 uint32 selector = NATIVE_OP_field::extract(opcode);
303 switch (selector) {
304 #if !PPC_REENTRANT_JIT
305 // Filter out functions that may invoke Execute68k() or
306 // CallMacOS(), this would break reentrancy as they could
307 // invalidate the translation cache and even overwrite
308 // continuation code when we are done with them.
309 case NATIVE_PATCH_NAME_REGISTRY:
310 dg.gen_invoke(DoPatchNameRegistry);
311 status = COMPILE_CODE_OK;
312 break;
313 case NATIVE_VIDEO_INSTALL_ACCEL:
314 dg.gen_invoke(VideoInstallAccel);
315 status = COMPILE_CODE_OK;
316 break;
317 case NATIVE_VIDEO_VBL:
318 dg.gen_invoke(VideoVBL);
319 status = COMPILE_CODE_OK;
320 break;
321 case NATIVE_GET_RESOURCE:
322 case NATIVE_GET_1_RESOURCE:
323 case NATIVE_GET_IND_RESOURCE:
324 case NATIVE_GET_1_IND_RESOURCE:
325 case NATIVE_R_GET_RESOURCE: {
326 static const uint32 get_resource_ptr[] = {
327 XLM_GET_RESOURCE,
328 XLM_GET_1_RESOURCE,
329 XLM_GET_IND_RESOURCE,
330 XLM_GET_1_IND_RESOURCE,
331 XLM_R_GET_RESOURCE
332 };
333 uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
334 typedef void (*func_t)(dyngen_cpu_base, uint32);
335 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
336 dg.gen_invoke_CPU_im(func, old_get_resource);
337 status = COMPILE_CODE_OK;
338 break;
339 }
340 #endif
341 case NATIVE_CHECK_LOAD_INVOC:
342 dg.gen_load_T0_GPR(3);
343 dg.gen_load_T1_GPR(4);
344 dg.gen_se_16_32_T1();
345 dg.gen_load_T2_GPR(5);
346 dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
347 status = COMPILE_CODE_OK;
348 break;
349 case NATIVE_NAMED_CHECK_LOAD_INVOC:
350 dg.gen_load_T0_GPR(3);
351 dg.gen_load_T1_GPR(4);
352 dg.gen_load_T2_GPR(5);
353 dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))named_check_load_invoc);
354 status = COMPILE_CODE_OK;
355 break;
356 case NATIVE_NQD_SYNC_HOOK:
357 dg.gen_load_T0_GPR(3);
358 dg.gen_invoke_T0_ret_T0((uint32 (*)(uint32))NQD_sync_hook);
359 dg.gen_store_T0_GPR(3);
360 status = COMPILE_CODE_OK;
361 break;
362 case NATIVE_NQD_BITBLT_HOOK:
363 dg.gen_load_T0_GPR(3);
364 dg.gen_invoke_T0_ret_T0((uint32 (*)(uint32))NQD_bitblt_hook);
365 dg.gen_store_T0_GPR(3);
366 status = COMPILE_CODE_OK;
367 break;
368 case NATIVE_NQD_FILLRECT_HOOK:
369 dg.gen_load_T0_GPR(3);
370 dg.gen_invoke_T0_ret_T0((uint32 (*)(uint32))NQD_fillrect_hook);
371 dg.gen_store_T0_GPR(3);
372 status = COMPILE_CODE_OK;
373 break;
374 case NATIVE_NQD_UNKNOWN_HOOK:
375 dg.gen_load_T0_GPR(3);
376 dg.gen_invoke_T0_ret_T0((uint32 (*)(uint32))NQD_unknown_hook);
377 dg.gen_store_T0_GPR(3);
378 status = COMPILE_CODE_OK;
379 break;
380 case NATIVE_NQD_BITBLT:
381 dg.gen_load_T0_GPR(3);
382 dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt);
383 status = COMPILE_CODE_OK;
384 break;
385 case NATIVE_NQD_INVRECT:
386 dg.gen_load_T0_GPR(3);
387 dg.gen_invoke_T0((void (*)(uint32))NQD_invrect);
388 status = COMPILE_CODE_OK;
389 break;
390 case NATIVE_NQD_FILLRECT:
391 dg.gen_load_T0_GPR(3);
392 dg.gen_invoke_T0((void (*)(uint32))NQD_fillrect);
393 status = COMPILE_CODE_OK;
394 break;
395 }
396 // Could we fully translate this NativeOp?
397 if (status == COMPILE_CODE_OK) {
398 if (!FN_field::test(opcode))
399 cg_context.done_compile = false;
400 else {
401 dg.gen_load_T0_LR_aligned();
402 dg.gen_set_PC_T0();
403 cg_context.done_compile = true;
404 }
405 break;
406 }
407 #if PPC_REENTRANT_JIT
408 // Try to execute NativeOp trampoline
409 if (!FN_field::test(opcode))
410 dg.gen_set_PC_im(cg_context.pc + 4);
411 else {
412 dg.gen_load_T0_LR_aligned();
413 dg.gen_set_PC_T0();
414 }
415 dg.gen_mov_32_T0_im(selector);
416 dg.gen_jmp(native_op_trampoline);
417 cg_context.done_compile = true;
418 status = COMPILE_EPILOGUE_OK;
419 break;
420 #endif
421 // Invoke NativeOp handler
422 if (!FN_field::test(opcode)) {
423 typedef void (*func_t)(dyngen_cpu_base, uint32);
424 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
425 dg.gen_invoke_CPU_im(func, selector);
426 cg_context.done_compile = false;
427 status = COMPILE_CODE_OK;
428 }
429 // Otherwise, let it generate a call to execute_sheep() which
430 // will cause necessary updates to the program counter
431 break;
432 }
433
434 default: { // EMUL_OP
435 uint32 emul_op = EMUL_OP_field::extract(opcode) - 3;
436 #if PPC_REENTRANT_JIT
437 // Try to execute EmulOp trampoline
438 dg.gen_set_PC_im(cg_context.pc + 4);
439 dg.gen_mov_32_T0_im(emul_op);
440 dg.gen_jmp(emul_op_trampoline);
441 cg_context.done_compile = true;
442 status = COMPILE_EPILOGUE_OK;
443 break;
444 #endif
445 // Invoke EmulOp handler
446 typedef void (*func_t)(dyngen_cpu_base, uint32);
447 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
448 dg.gen_invoke_CPU_im(func, emul_op);
449 cg_context.done_compile = false;
450 status = COMPILE_CODE_OK;
451 break;
452 }
453 }
454 return status;
455 }
456 #endif
457
458 // Handle MacOS interrupt
459 void sheepshaver_cpu::interrupt(uint32 entry)
460 {
461 #if EMUL_TIME_STATS
462 ppc_interrupt_count++;
463 const clock_t interrupt_start = clock();
464 #endif
465
466 // Save program counters and branch registers
467 uint32 saved_pc = pc();
468 uint32 saved_lr = lr();
469 uint32 saved_ctr= ctr();
470 uint32 saved_sp = gpr(1);
471
472 // Initialize stack pointer to SheepShaver alternate stack base
473 gpr(1) = SignalStackBase() - 64;
474
475 // Build trampoline to return from interrupt
476 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
477
478 // Prepare registers for nanokernel interrupt routine
479 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
480 kernel_data->v[0x018 >> 2] = htonl(gpr(6));
481
482 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
483 assert(gpr(6) != 0);
484 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
485 WriteMacInt32(gpr(6) + 0x144, gpr(8));
486 WriteMacInt32(gpr(6) + 0x14c, gpr(9));
487 WriteMacInt32(gpr(6) + 0x154, gpr(10));
488 WriteMacInt32(gpr(6) + 0x15c, gpr(11));
489 WriteMacInt32(gpr(6) + 0x164, gpr(12));
490 WriteMacInt32(gpr(6) + 0x16c, gpr(13));
491
492 gpr(1) = KernelDataAddr;
493 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
494 gpr(8) = 0;
495 gpr(10) = trampoline.addr();
496 gpr(12) = trampoline.addr();
497 gpr(13) = get_cr();
498
499 // rlwimi. r7,r7,8,0,0
500 uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
501 record_cr0(result);
502 gpr(7) = result;
503
504 gpr(11) = 0xf072; // MSR (SRR1)
505 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
506
507 // Enter nanokernel
508 execute(entry);
509
510 // Restore program counters and branch registers
511 pc() = saved_pc;
512 lr() = saved_lr;
513 ctr()= saved_ctr;
514 gpr(1) = saved_sp;
515
516 #if EMUL_TIME_STATS
517 interrupt_time += (clock() - interrupt_start);
518 #endif
519 }
520
521 // Execute 68k routine
522 void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
523 {
524 #if EMUL_TIME_STATS
525 exec68k_count++;
526 const clock_t exec68k_start = clock();
527 #endif
528
529 #if SAFE_EXEC_68K
530 if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
531 printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
532 #endif
533
534 // Save program counters and branch registers
535 uint32 saved_pc = pc();
536 uint32 saved_lr = lr();
537 uint32 saved_ctr= ctr();
538 uint32 saved_cr = get_cr();
539
540 // Create MacOS stack frame
541 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
542 uint32 sp = gpr(1);
543 gpr(1) -= 56;
544 WriteMacInt32(gpr(1), sp);
545
546 // Save PowerPC registers
547 uint32 saved_GPRs[19];
548 memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
549 #if SAVE_FP_EXEC_68K
550 double saved_FPRs[18];
551 memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
552 #endif
553
554 // Setup registers for 68k emulator
555 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
556 for (int i = 0; i < 8; i++) // d[0]..d[7]
557 gpr(8 + i) = r->d[i];
558 for (int i = 0; i < 7; i++) // a[0]..a[6]
559 gpr(16 + i) = r->a[i];
560 gpr(23) = 0;
561 gpr(24) = entry;
562 gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
563 gpr(26) = 0;
564 gpr(28) = 0; // VBR
565 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
566 gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
567 gpr(31) = KernelDataAddr + 0x1000;
568
569 // Push return address (points to EXEC_RETURN opcode) on stack
570 gpr(1) -= 4;
571 WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
572
573 // Rentering 68k emulator
574 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
575
576 // Set r0 to 0 for 68k emulator
577 gpr(0) = 0;
578
579 // Execute 68k opcode
580 uint32 opcode = ReadMacInt16(gpr(24));
581 gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
582 gpr(29) += opcode * 8;
583 execute(gpr(29));
584
585 // Save r25 (contains current 68k interrupt level)
586 WriteMacInt32(XLM_68K_R25, gpr(25));
587
588 // Reentering EMUL_OP mode
589 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
590
591 // Save 68k registers
592 for (int i = 0; i < 8; i++) // d[0]..d[7]
593 r->d[i] = gpr(8 + i);
594 for (int i = 0; i < 7; i++) // a[0]..a[6]
595 r->a[i] = gpr(16 + i);
596
597 // Restore PowerPC registers
598 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
599 #if SAVE_FP_EXEC_68K
600 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
601 #endif
602
603 // Cleanup stack
604 gpr(1) += 56;
605
606 // Restore program counters and branch registers
607 pc() = saved_pc;
608 lr() = saved_lr;
609 ctr()= saved_ctr;
610 set_cr(saved_cr);
611
612 #if EMUL_TIME_STATS
613 exec68k_time += (clock() - exec68k_start);
614 #endif
615 }
616
617 // Call MacOS PPC code
618 uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
619 {
620 #if EMUL_TIME_STATS
621 macos_exec_count++;
622 const clock_t macos_exec_start = clock();
623 #endif
624
625 // Save program counters and branch registers
626 uint32 saved_pc = pc();
627 uint32 saved_lr = lr();
628 uint32 saved_ctr= ctr();
629
630 // Build trampoline with EXEC_RETURN
631 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
632 lr() = trampoline.addr();
633
634 gpr(1) -= 64; // Create stack frame
635 uint32 proc = ReadMacInt32(tvect); // Get routine address
636 uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
637
638 // Save PowerPC registers
639 uint32 regs[8];
640 regs[0] = gpr(2);
641 for (int i = 0; i < nargs; i++)
642 regs[i + 1] = gpr(i + 3);
643
644 // Prepare and call MacOS routine
645 gpr(2) = toc;
646 for (int i = 0; i < nargs; i++)
647 gpr(i + 3) = args[i];
648 execute(proc);
649 uint32 retval = gpr(3);
650
651 // Restore PowerPC registers
652 for (int i = 0; i <= nargs; i++)
653 gpr(i + 2) = regs[i];
654
655 // Cleanup stack
656 gpr(1) += 64;
657
658 // Restore program counters and branch registers
659 pc() = saved_pc;
660 lr() = saved_lr;
661 ctr()= saved_ctr;
662
663 #if EMUL_TIME_STATS
664 macos_exec_time += (clock() - macos_exec_start);
665 #endif
666
667 return retval;
668 }
669
670 // Execute ppc routine
671 inline void sheepshaver_cpu::execute_ppc(uint32 entry)
672 {
673 // Save branch registers
674 uint32 saved_lr = lr();
675
676 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
677 WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
678 lr() = trampoline.addr();
679
680 execute(entry);
681
682 // Restore branch registers
683 lr() = saved_lr;
684 }
685
686 // Resource Manager thunk
687 inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
688 {
689 uint32 type = gpr(3);
690 int16 id = gpr(4);
691
692 // Create stack frame
693 gpr(1) -= 56;
694
695 // Call old routine
696 execute_ppc(old_get_resource);
697
698 // Call CheckLoad()
699 uint32 handle = gpr(3);
700 check_load_invoc(type, id, handle);
701 gpr(3) = handle;
702
703 // Cleanup stack
704 gpr(1) += 56;
705 }
706
707
708 /**
709 * SheepShaver CPU engine interface
710 **/
711
712 // PowerPC CPU emulator
713 static sheepshaver_cpu *ppc_cpu = NULL;
714
715 void FlushCodeCache(uintptr start, uintptr end)
716 {
717 D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
718 ppc_cpu->invalidate_cache_range(start, end);
719 }
720
721 // Dump PPC registers
722 static void dump_registers(void)
723 {
724 ppc_cpu->dump_registers();
725 }
726
727 // Dump log
728 static void dump_log(void)
729 {
730 ppc_cpu->dump_log();
731 }
732
733 static int read_mem(bfd_vma memaddr, bfd_byte *myaddr, int length, struct disassemble_info *info)
734 {
735 Mac2Host_memcpy(myaddr, memaddr, length);
736 return 0;
737 }
738
739 static void dump_disassembly(const uint32 pc, const int prefix_count, const int suffix_count)
740 {
741 struct disassemble_info info;
742 INIT_DISASSEMBLE_INFO(info, stderr, fprintf);
743 info.read_memory_func = read_mem;
744
745 const int count = prefix_count + suffix_count + 1;
746 const uint32 base_addr = pc - prefix_count * 4;
747 for (int i = 0; i < count; i++) {
748 const bfd_vma addr = base_addr + i * 4;
749 fprintf(stderr, "%s0x%8llx: ", addr == pc ? " >" : " ", addr);
750 print_insn_ppc(addr, &info);
751 fprintf(stderr, "\n");
752 }
753 }
754
755 sigsegv_return_t sigsegv_handler(sigsegv_info_t *sip)
756 {
757 #if ENABLE_VOSF
758 // Handle screen fault
759 extern bool Screen_fault_handler(sigsegv_info_t *sip);
760 if (Screen_fault_handler(sip))
761 return SIGSEGV_RETURN_SUCCESS;
762 #endif
763
764 const uintptr addr = (uintptr)sigsegv_get_fault_address(sip);
765 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
766 // Ignore writes to ROM
767 if ((addr - (uintptr)ROMBaseHost) < ROM_SIZE)
768 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
769
770 // Get program counter of target CPU
771 sheepshaver_cpu * const cpu = ppc_cpu;
772 const uint32 pc = cpu->pc();
773
774 // Fault in Mac ROM or RAM?
775 bool mac_fault = (pc >= ROMBase) && (pc < (ROMBase + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize)) || (pc >= DR_CACHE_BASE && pc < (DR_CACHE_BASE + DR_CACHE_SIZE));
776 if (mac_fault) {
777
778 // "VM settings" during MacOS 8 installation
779 if (pc == ROMBase + 0x488160 && cpu->gpr(20) == 0xf8000000)
780 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
781
782 // MacOS 8.5 installation
783 else if (pc == ROMBase + 0x488140 && cpu->gpr(16) == 0xf8000000)
784 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
785
786 // MacOS 8 serial drivers on startup
787 else if (pc == ROMBase + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
788 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
789
790 // MacOS 8.1 serial drivers on startup
791 else if (pc == ROMBase + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
792 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
793 else if (pc == ROMBase + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
794 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
795
796 // MacOS 8.6 serial drivers on startup (with DR Cache and OldWorld ROM)
797 else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(16) == 0xf3012002 || cpu->gpr(16) == 0xf3012000))
798 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
799 else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
800 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
801
802 // Ignore writes to the zero page
803 else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
804 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
805
806 // Ignore all other faults, if requested
807 if (PrefsFindBool("ignoresegv"))
808 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
809 }
810 #else
811 #error "FIXME: You don't have the capability to skip instruction within signal handlers"
812 #endif
813
814 fprintf(stderr, "SIGSEGV\n");
815 fprintf(stderr, " pc %p\n", sigsegv_get_fault_instruction_address(sip));
816 fprintf(stderr, " ea %p\n", sigsegv_get_fault_address(sip));
817 dump_registers();
818 ppc_cpu->dump_log();
819 dump_disassembly(pc, 8, 8);
820
821 enter_mon();
822 QuitEmulator();
823
824 return SIGSEGV_RETURN_FAILURE;
825 }
826
827 /*
828 * Initialize CPU emulation
829 */
830
831 void init_emul_ppc(void)
832 {
833 // Get pointer to KernelData in host address space
834 kernel_data = (KernelData *)Mac2HostAddr(KERNEL_DATA_BASE);
835
836 // Initialize main CPU emulator
837 ppc_cpu = new sheepshaver_cpu();
838 ppc_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROMBase + 0x30d000));
839 ppc_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
840 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
841
842 #if ENABLE_MON
843 // Install "regs" command in cxmon
844 mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
845 mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
846 #endif
847
848 #if EMUL_TIME_STATS
849 emul_start_time = clock();
850 #endif
851 }
852
853 /*
854 * Deinitialize emulation
855 */
856
857 void exit_emul_ppc(void)
858 {
859 #if EMUL_TIME_STATS
860 clock_t emul_end_time = clock();
861
862 printf("### Statistics for SheepShaver emulation parts\n");
863 const clock_t emul_time = emul_end_time - emul_start_time;
864 printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
865 printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
866 (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
867 printf("Total ppc interrupt count: %d (%2.1f %%)\n", ppc_interrupt_count,
868 (double(ppc_interrupt_count) * 100.0) / double(interrupt_count));
869
870 #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
871 printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
872 printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
873 double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
874 100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
875 } while (0)
876
877 PRINT_STATS("Execute68k[Trap] execution", exec68k);
878 PRINT_STATS("NativeOp execution", native_exec);
879 PRINT_STATS("MacOS routine execution", macos_exec);
880
881 #undef PRINT_STATS
882 printf("\n");
883 #endif
884
885 delete ppc_cpu;
886 ppc_cpu = NULL;
887 }
888
889 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
890 // Initialize EmulOp trampolines
891 void init_emul_op_trampolines(basic_dyngen & dg)
892 {
893 typedef void (*func_t)(dyngen_cpu_base, uint32);
894 func_t func;
895
896 // EmulOp
897 emul_op_trampoline = dg.gen_start();
898 func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
899 dg.gen_invoke_CPU_T0(func);
900 dg.gen_exec_return();
901 dg.gen_end();
902
903 // NativeOp
904 native_op_trampoline = dg.gen_start();
905 func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
906 dg.gen_invoke_CPU_T0(func);
907 dg.gen_exec_return();
908 dg.gen_end();
909
910 D(bug("EmulOp trampoline: %p\n", emul_op_trampoline));
911 D(bug("NativeOp trampoline: %p\n", native_op_trampoline));
912 }
913 #endif
914
915 /*
916 * Emulation loop
917 */
918
919 void emul_ppc(uint32 entry)
920 {
921 #if 0
922 ppc_cpu->start_log();
923 #endif
924 // start emulation loop and enable code translation or caching
925 ppc_cpu->execute(entry);
926 }
927
928 /*
929 * Handle PowerPC interrupt
930 */
931
932 void TriggerInterrupt(void)
933 {
934 idle_resume();
935 #if 0
936 WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
937 #else
938 // Trigger interrupt to main cpu only
939 if (ppc_cpu)
940 ppc_cpu->trigger_interrupt();
941 #endif
942 }
943
944 void HandleInterrupt(powerpc_registers *r)
945 {
946 #ifdef USE_SDL_VIDEO
947 // We must fill in the events queue in the same thread that did call SDL_SetVideoMode()
948 SDL_PumpEvents();
949 #endif
950
951 // Do nothing if interrupts are disabled
952 if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0)
953 return;
954
955 // Update interrupt count
956 #if EMUL_TIME_STATS
957 interrupt_count++;
958 #endif
959
960 // Interrupt action depends on current run mode
961 switch (ReadMacInt32(XLM_RUN_MODE)) {
962 case MODE_68K:
963 // 68k emulator active, trigger 68k interrupt level 1
964 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
965 r->cr.set(r->cr.get() | tswap32(kernel_data->v[0x674 >> 2]));
966 break;
967
968 #if INTERRUPTS_IN_NATIVE_MODE
969 case MODE_NATIVE:
970 // 68k emulator inactive, in nanokernel?
971 if (r->gpr[1] != KernelDataAddr) {
972
973 // Prepare for 68k interrupt level 1
974 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
975 WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
976 ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
977 | tswap32(kernel_data->v[0x674 >> 2]));
978
979 // Execute nanokernel interrupt routine (this will activate the 68k emulator)
980 DisableInterrupt();
981 if (ROMType == ROMTYPE_NEWWORLD)
982 ppc_cpu->interrupt(ROMBase + 0x312b1c);
983 else
984 ppc_cpu->interrupt(ROMBase + 0x312a3c);
985 }
986 break;
987 #endif
988
989 #if INTERRUPTS_IN_EMUL_OP_MODE
990 case MODE_EMUL_OP:
991 // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
992 if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
993 #if EMUL_TIME_STATS
994 const clock_t interrupt_start = clock();
995 #endif
996 #if 1
997 // Execute full 68k interrupt routine
998 M68kRegisters r;
999 uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
1000 WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
1001 static const uint8 proc_template[] = {
1002 0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
1003 0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
1004 0x40, 0xe7, // move sr,-(sp) (saved SR)
1005 0x20, 0x78, 0x00, 0x064, // move.l $64,a0
1006 0x4e, 0xd0, // jmp (a0)
1007 M68K_RTS >> 8, M68K_RTS & 0xff // @1
1008 };
1009 BUILD_SHEEPSHAVER_PROCEDURE(proc);
1010 Execute68k(proc, &r);
1011 WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
1012 #else
1013 // Only update cursor
1014 if (HasMacStarted()) {
1015 if (InterruptFlags & INTFLAG_VIA) {
1016 ClearInterruptFlag(INTFLAG_VIA);
1017 ADBInterrupt();
1018 ExecuteNative(NATIVE_VIDEO_VBL);
1019 }
1020 }
1021 #endif
1022 #if EMUL_TIME_STATS
1023 interrupt_time += (clock() - interrupt_start);
1024 #endif
1025 }
1026 break;
1027 #endif
1028 }
1029 }
1030
1031 // Execute NATIVE_OP routine
1032 void sheepshaver_cpu::execute_native_op(uint32 selector)
1033 {
1034 #if EMUL_TIME_STATS
1035 native_exec_count++;
1036 const clock_t native_exec_start = clock();
1037 #endif
1038
1039 switch (selector) {
1040 case NATIVE_PATCH_NAME_REGISTRY:
1041 DoPatchNameRegistry();
1042 break;
1043 case NATIVE_VIDEO_INSTALL_ACCEL:
1044 VideoInstallAccel();
1045 break;
1046 case NATIVE_VIDEO_VBL:
1047 VideoVBL();
1048 break;
1049 case NATIVE_VIDEO_DO_DRIVER_IO:
1050 gpr(3) = (int32)(int16)VideoDoDriverIO(gpr(3), gpr(4), gpr(5), gpr(6), gpr(7));
1051 break;
1052 case NATIVE_ETHER_AO_GET_HWADDR:
1053 AO_get_ethernet_address(gpr(3));
1054 break;
1055 case NATIVE_ETHER_AO_ADD_MULTI:
1056 AO_enable_multicast(gpr(3));
1057 break;
1058 case NATIVE_ETHER_AO_DEL_MULTI:
1059 AO_disable_multicast(gpr(3));
1060 break;
1061 case NATIVE_ETHER_AO_SEND_PACKET:
1062 AO_transmit_packet(gpr(3));
1063 break;
1064 case NATIVE_ETHER_IRQ:
1065 EtherIRQ();
1066 break;
1067 case NATIVE_ETHER_INIT:
1068 gpr(3) = InitStreamModule((void *)gpr(3));
1069 break;
1070 case NATIVE_ETHER_TERM:
1071 TerminateStreamModule();
1072 break;
1073 case NATIVE_ETHER_OPEN:
1074 gpr(3) = ether_open((queue_t *)gpr(3), (void *)gpr(4), gpr(5), gpr(6), (void*)gpr(7));
1075 break;
1076 case NATIVE_ETHER_CLOSE:
1077 gpr(3) = ether_close((queue_t *)gpr(3), gpr(4), (void *)gpr(5));
1078 break;
1079 case NATIVE_ETHER_WPUT:
1080 gpr(3) = ether_wput((queue_t *)gpr(3), (mblk_t *)gpr(4));
1081 break;
1082 case NATIVE_ETHER_RSRV:
1083 gpr(3) = ether_rsrv((queue_t *)gpr(3));
1084 break;
1085 case NATIVE_NQD_SYNC_HOOK:
1086 gpr(3) = NQD_sync_hook(gpr(3));
1087 break;
1088 case NATIVE_NQD_UNKNOWN_HOOK:
1089 gpr(3) = NQD_unknown_hook(gpr(3));
1090 break;
1091 case NATIVE_NQD_BITBLT_HOOK:
1092 gpr(3) = NQD_bitblt_hook(gpr(3));
1093 break;
1094 case NATIVE_NQD_BITBLT:
1095 NQD_bitblt(gpr(3));
1096 break;
1097 case NATIVE_NQD_FILLRECT_HOOK:
1098 gpr(3) = NQD_fillrect_hook(gpr(3));
1099 break;
1100 case NATIVE_NQD_INVRECT:
1101 NQD_invrect(gpr(3));
1102 break;
1103 case NATIVE_NQD_FILLRECT:
1104 NQD_fillrect(gpr(3));
1105 break;
1106 case NATIVE_SERIAL_NOTHING:
1107 case NATIVE_SERIAL_OPEN:
1108 case NATIVE_SERIAL_PRIME_IN:
1109 case NATIVE_SERIAL_PRIME_OUT:
1110 case NATIVE_SERIAL_CONTROL:
1111 case NATIVE_SERIAL_STATUS:
1112 case NATIVE_SERIAL_CLOSE: {
1113 typedef int16 (*SerialCallback)(uint32, uint32);
1114 static const SerialCallback serial_callbacks[] = {
1115 SerialNothing,
1116 SerialOpen,
1117 SerialPrimeIn,
1118 SerialPrimeOut,
1119 SerialControl,
1120 SerialStatus,
1121 SerialClose
1122 };
1123 gpr(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](gpr(3), gpr(4));
1124 break;
1125 }
1126 case NATIVE_GET_RESOURCE:
1127 get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1128 break;
1129 case NATIVE_GET_1_RESOURCE:
1130 get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1131 break;
1132 case NATIVE_GET_IND_RESOURCE:
1133 get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1134 break;
1135 case NATIVE_GET_1_IND_RESOURCE:
1136 get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1137 break;
1138 case NATIVE_R_GET_RESOURCE:
1139 get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1140 break;
1141 case NATIVE_MAKE_EXECUTABLE:
1142 MakeExecutable(0, gpr(4), gpr(5));
1143 break;
1144 case NATIVE_CHECK_LOAD_INVOC:
1145 check_load_invoc(gpr(3), gpr(4), gpr(5));
1146 break;
1147 case NATIVE_NAMED_CHECK_LOAD_INVOC:
1148 named_check_load_invoc(gpr(3), gpr(4), gpr(5));
1149 break;
1150 default:
1151 printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
1152 QuitEmulator();
1153 break;
1154 }
1155
1156 #if EMUL_TIME_STATS
1157 native_exec_time += (clock() - native_exec_start);
1158 #endif
1159 }
1160
1161 /*
1162 * Execute 68k subroutine (must be ended with EXEC_RETURN)
1163 * This must only be called by the emul_thread when in EMUL_OP mode
1164 * r->a[7] is unused, the routine runs on the caller's stack
1165 */
1166
1167 void Execute68k(uint32 pc, M68kRegisters *r)
1168 {
1169 ppc_cpu->execute_68k(pc, r);
1170 }
1171
1172 /*
1173 * Execute 68k A-Trap from EMUL_OP routine
1174 * r->a[7] is unused, the routine runs on the caller's stack
1175 */
1176
1177 void Execute68kTrap(uint16 trap, M68kRegisters *r)
1178 {
1179 SheepVar proc_var(4);
1180 uint32 proc = proc_var.addr();
1181 WriteMacInt16(proc, trap);
1182 WriteMacInt16(proc + 2, M68K_RTS);
1183 Execute68k(proc, r);
1184 }
1185
1186 /*
1187 * Call MacOS PPC code
1188 */
1189
1190 uint32 call_macos(uint32 tvect)
1191 {
1192 return ppc_cpu->execute_macos_code(tvect, 0, NULL);
1193 }
1194
1195 uint32 call_macos1(uint32 tvect, uint32 arg1)
1196 {
1197 const uint32 args[] = { arg1 };
1198 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1199 }
1200
1201 uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1202 {
1203 const uint32 args[] = { arg1, arg2 };
1204 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1205 }
1206
1207 uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1208 {
1209 const uint32 args[] = { arg1, arg2, arg3 };
1210 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1211 }
1212
1213 uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1214 {
1215 const uint32 args[] = { arg1, arg2, arg3, arg4 };
1216 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1217 }
1218
1219 uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1220 {
1221 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1222 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1223 }
1224
1225 uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1226 {
1227 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1228 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1229 }
1230
1231 uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1232 {
1233 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1234 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1235 }