1 |
/* |
2 |
* CPU1541_SC.cpp - Single-cycle 6502 (1541) emulation |
3 |
* |
4 |
* Frodo (C) 1994-1997,2002-2005 Christian Bauer |
5 |
* |
6 |
* This program is free software; you can redistribute it and/or modify |
7 |
* it under the terms of the GNU General Public License as published by |
8 |
* the Free Software Foundation; either version 2 of the License, or |
9 |
* (at your option) any later version. |
10 |
* |
11 |
* This program is distributed in the hope that it will be useful, |
12 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 |
* GNU General Public License for more details. |
15 |
* |
16 |
* You should have received a copy of the GNU General Public License |
17 |
* along with this program; if not, write to the Free Software |
18 |
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
19 |
*/ |
20 |
|
21 |
/* |
22 |
* Notes: |
23 |
* ------ |
24 |
* |
25 |
* Opcode execution: |
26 |
* - All opcodes are resolved into single clock cycles. There is one |
27 |
* switch case for each cycle. |
28 |
* - The "state" variable specifies the routine to be executed in the |
29 |
* next cycle. Its upper 8 bits contain the current opcode, its lower |
30 |
* 8 bits contain the cycle number (0..7) within the opcode. |
31 |
* - Opcodes are fetched in cycle 0 (state = 0) |
32 |
* - The states 0x0010..0x0027 are used for interrupts |
33 |
* - There is exactly one memory access in each clock cycle |
34 |
* |
35 |
* Memory map (1541C, the 1541 and 1541-II are a bit different): |
36 |
* |
37 |
* $0000-$07ff RAM (2K) |
38 |
* $0800-$0fff RAM mirror |
39 |
* $1000-$17ff free |
40 |
* $1800-$1bff VIA 1 |
41 |
* $1c00-$1fff VIA 2 |
42 |
* $2000-$bfff free |
43 |
* $c000-$ffff ROM (16K) |
44 |
* |
45 |
* - All memory accesses are done with the read_byte() and |
46 |
* write_byte() functions which also do the memory address |
47 |
* decoding. |
48 |
* - The possible interrupt sources are: |
49 |
* INT_VIA1IRQ: I flag is checked, jump to ($fffe) (unused) |
50 |
* INT_VIA2IRQ: I flag is checked, jump to ($fffe) (unused) |
51 |
* INT_IECIRQ: I flag is checked, jump to ($fffe) (unused) |
52 |
* INT_RESET: Jump to ($fffc) |
53 |
* - The z_flag variable has the inverse meaning of the |
54 |
* 6502 Z flag |
55 |
* - Only the highest bit of the n_flag variable is used |
56 |
* - The $f2 opcode that would normally crash the 6502 is |
57 |
* used to implement emulator-specific functions |
58 |
* - The 1541 6502 emulation also includes a very simple VIA |
59 |
* emulation (enough to make the IEC bus and GCR loading work). |
60 |
* It's too small to move it to a source file of its own. |
61 |
* |
62 |
* Incompatibilities: |
63 |
* ------------------ |
64 |
* |
65 |
* - VIA emulation incomplete |
66 |
*/ |
67 |
|
68 |
#include "sysdeps.h" |
69 |
|
70 |
#include "CPU1541.h" |
71 |
#include "CPU_common.h" |
72 |
#include "1541job.h" |
73 |
#include "C64.h" |
74 |
#include "CIA.h" |
75 |
#include "Display.h" |
76 |
|
77 |
|
78 |
enum { |
79 |
INT_RESET = 3 |
80 |
}; |
81 |
|
82 |
|
83 |
/* |
84 |
* 6502 constructor: Initialize registers |
85 |
*/ |
86 |
|
87 |
MOS6502_1541::MOS6502_1541(C64 *c64, Job1541 *job, C64Display *disp, uint8 *Ram, uint8 *Rom) |
88 |
: ram(Ram), rom(Rom), the_c64(c64), the_display(disp), the_job(job) |
89 |
{ |
90 |
a = x = y = 0; |
91 |
sp = 0xff; |
92 |
n_flag = z_flag = 0; |
93 |
v_flag = d_flag = c_flag = false; |
94 |
i_flag = true; |
95 |
|
96 |
via1_t1c = via1_t1l = via1_t2c = via1_t2l = 0; |
97 |
via1_sr = 0; |
98 |
via2_t1c = via2_t1l = via2_t2c = via2_t2l = 0; |
99 |
via2_sr = 0; |
100 |
|
101 |
first_irq_cycle = 0; |
102 |
Idle = false; |
103 |
} |
104 |
|
105 |
|
106 |
/* |
107 |
* Reset CPU asynchronously |
108 |
*/ |
109 |
|
110 |
void MOS6502_1541::AsyncReset(void) |
111 |
{ |
112 |
interrupt.intr[INT_RESET] = true; |
113 |
Idle = false; |
114 |
} |
115 |
|
116 |
|
117 |
/* |
118 |
* Get 6502 register state |
119 |
*/ |
120 |
|
121 |
void MOS6502_1541::GetState(MOS6502State *s) |
122 |
{ |
123 |
s->a = a; |
124 |
s->x = x; |
125 |
s->y = y; |
126 |
|
127 |
s->p = 0x20 | (n_flag & 0x80); |
128 |
if (v_flag) s->p |= 0x40; |
129 |
if (d_flag) s->p |= 0x08; |
130 |
if (i_flag) s->p |= 0x04; |
131 |
if (!z_flag) s->p |= 0x02; |
132 |
if (c_flag) s->p |= 0x01; |
133 |
|
134 |
s->pc = pc; |
135 |
s->sp = sp | 0x0100; |
136 |
|
137 |
s->intr[INT_VIA1IRQ] = interrupt.intr[INT_VIA1IRQ]; |
138 |
s->intr[INT_VIA2IRQ] = interrupt.intr[INT_VIA2IRQ]; |
139 |
s->intr[INT_IECIRQ] = interrupt.intr[INT_IECIRQ]; |
140 |
s->intr[INT_RESET] = interrupt.intr[INT_RESET]; |
141 |
s->idle = Idle; |
142 |
|
143 |
s->via1_pra = via1_pra; s->via1_ddra = via1_ddra; |
144 |
s->via1_prb = via1_prb; s->via1_ddrb = via1_ddrb; |
145 |
s->via1_t1c = via1_t1c; s->via1_t1l = via1_t1l; |
146 |
s->via1_t2c = via1_t2c; s->via1_t2l = via1_t2l; |
147 |
s->via1_sr = via1_sr; |
148 |
s->via1_acr = via1_acr; s->via1_pcr = via1_pcr; |
149 |
s->via1_ifr = via1_ifr; s->via1_ier = via1_ier; |
150 |
|
151 |
s->via2_pra = via2_pra; s->via2_ddra = via2_ddra; |
152 |
s->via2_prb = via2_prb; s->via2_ddrb = via2_ddrb; |
153 |
s->via2_t1c = via2_t1c; s->via2_t1l = via2_t1l; |
154 |
s->via2_t2c = via2_t2c; s->via2_t2l = via2_t2l; |
155 |
s->via2_sr = via2_sr; |
156 |
s->via2_acr = via2_acr; s->via2_pcr = via2_pcr; |
157 |
s->via2_ifr = via2_ifr; s->via2_ier = via2_ier; |
158 |
} |
159 |
|
160 |
|
161 |
/* |
162 |
* Restore 6502 state |
163 |
*/ |
164 |
|
165 |
void MOS6502_1541::SetState(MOS6502State *s) |
166 |
{ |
167 |
a = s->a; |
168 |
x = s->x; |
169 |
y = s->y; |
170 |
|
171 |
n_flag = s->p; |
172 |
v_flag = s->p & 0x40; |
173 |
d_flag = s->p & 0x08; |
174 |
i_flag = s->p & 0x04; |
175 |
z_flag = !(s->p & 0x02); |
176 |
c_flag = s->p & 0x01; |
177 |
|
178 |
pc = s->pc; |
179 |
sp = s->sp & 0xff; |
180 |
|
181 |
interrupt.intr[INT_VIA1IRQ] = s->intr[INT_VIA1IRQ]; |
182 |
interrupt.intr[INT_VIA2IRQ] = s->intr[INT_VIA2IRQ]; |
183 |
interrupt.intr[INT_IECIRQ] = s->intr[INT_IECIRQ]; |
184 |
interrupt.intr[INT_RESET] = s->intr[INT_RESET]; |
185 |
Idle = s->idle; |
186 |
|
187 |
via1_pra = s->via1_pra; via1_ddra = s->via1_ddra; |
188 |
via1_prb = s->via1_prb; via1_ddrb = s->via1_ddrb; |
189 |
via1_t1c = s->via1_t1c; via1_t1l = s->via1_t1l; |
190 |
via1_t2c = s->via1_t2c; via1_t2l = s->via1_t2l; |
191 |
via1_sr = s->via1_sr; |
192 |
via1_acr = s->via1_acr; via1_pcr = s->via1_pcr; |
193 |
via1_ifr = s->via1_ifr; via1_ier = s->via1_ier; |
194 |
|
195 |
via2_pra = s->via2_pra; via2_ddra = s->via2_ddra; |
196 |
via2_prb = s->via2_prb; via2_ddrb = s->via2_ddrb; |
197 |
via2_t1c = s->via2_t1c; via2_t1l = s->via2_t1l; |
198 |
via2_t2c = s->via2_t2c; via2_t2l = s->via2_t2l; |
199 |
via2_sr = s->via2_sr; |
200 |
via2_acr = s->via2_acr; via2_pcr = s->via2_pcr; |
201 |
via2_ifr = s->via2_ifr; via2_ier = s->via2_ier; |
202 |
} |
203 |
|
204 |
|
205 |
/* |
206 |
* Read a byte from I/O space |
207 |
*/ |
208 |
|
209 |
inline uint8 MOS6502_1541::read_byte_io(uint16 adr) |
210 |
{ |
211 |
if ((adr & 0xfc00) == 0x1800) // VIA 1 |
212 |
switch (adr & 0xf) { |
213 |
case 0: |
214 |
return (via1_prb & 0x1a |
215 |
| ((IECLines & TheCIA2->IECLines) >> 7) // DATA |
216 |
| ((IECLines & TheCIA2->IECLines) >> 4) & 0x04 // CLK |
217 |
| (TheCIA2->IECLines << 3) & 0x80) ^ 0x85; // ATN |
218 |
case 1: |
219 |
case 15: |
220 |
return 0xff; // Keep 1541C ROMs happy (track 0 sensor) |
221 |
case 2: |
222 |
return via1_ddrb; |
223 |
case 3: |
224 |
return via1_ddra; |
225 |
case 4: |
226 |
via1_ifr &= 0xbf; |
227 |
return via1_t1c; |
228 |
case 5: |
229 |
return via1_t1c >> 8; |
230 |
case 6: |
231 |
return via1_t1l; |
232 |
case 7: |
233 |
return via1_t1l >> 8; |
234 |
case 8: |
235 |
via1_ifr &= 0xdf; |
236 |
return via1_t2c; |
237 |
case 9: |
238 |
return via1_t2c >> 8; |
239 |
case 10: |
240 |
return via1_sr; |
241 |
case 11: |
242 |
return via1_acr; |
243 |
case 12: |
244 |
return via1_pcr; |
245 |
case 13: |
246 |
return via1_ifr | (via1_ifr & via1_ier ? 0x80 : 0); |
247 |
case 14: |
248 |
return via1_ier | 0x80; |
249 |
default: // Can't happen |
250 |
return 0; |
251 |
} |
252 |
|
253 |
else if ((adr & 0xfc00) == 0x1c00) // VIA 2 |
254 |
switch (adr & 0xf) { |
255 |
case 0: |
256 |
if (the_job->SyncFound()) |
257 |
return via2_prb & 0x7f | the_job->WPState(); |
258 |
else |
259 |
return via2_prb | 0x80 | the_job->WPState(); |
260 |
case 1: |
261 |
case 15: |
262 |
return the_job->ReadGCRByte(); |
263 |
case 2: |
264 |
return via2_ddrb; |
265 |
case 3: |
266 |
return via2_ddra; |
267 |
case 4: |
268 |
via2_ifr &= 0xbf; |
269 |
interrupt.intr[INT_VIA2IRQ] = false; // Clear job IRQ |
270 |
return via2_t1c; |
271 |
case 5: |
272 |
return via2_t1c >> 8; |
273 |
case 6: |
274 |
return via2_t1l; |
275 |
case 7: |
276 |
return via2_t1l >> 8; |
277 |
case 8: |
278 |
via2_ifr &= 0xdf; |
279 |
return via2_t2c; |
280 |
case 9: |
281 |
return via2_t2c >> 8; |
282 |
case 10: |
283 |
return via2_sr; |
284 |
case 11: |
285 |
return via2_acr; |
286 |
case 12: |
287 |
return via2_pcr; |
288 |
case 13: |
289 |
return via2_ifr | (via2_ifr & via2_ier ? 0x80 : 0); |
290 |
case 14: |
291 |
return via2_ier | 0x80; |
292 |
default: // Can't happen |
293 |
return 0; |
294 |
} |
295 |
|
296 |
else |
297 |
return adr >> 8; |
298 |
} |
299 |
|
300 |
|
301 |
/* |
302 |
* Read a byte from the CPU's address space |
303 |
*/ |
304 |
|
305 |
uint8 MOS6502_1541::read_byte(uint16 adr) |
306 |
{ |
307 |
if (adr >= 0xc000) |
308 |
return rom[adr & 0x3fff]; |
309 |
else if (adr < 0x1000) |
310 |
return ram[adr & 0x07ff]; |
311 |
else |
312 |
return read_byte_io(adr); |
313 |
} |
314 |
|
315 |
|
316 |
/* |
317 |
* Read a word (little-endian) from the CPU's address space |
318 |
*/ |
319 |
|
320 |
inline uint16 MOS6502_1541::read_word(uint16 adr) |
321 |
{ |
322 |
return read_byte(adr) | (read_byte(adr+1) << 8); |
323 |
} |
324 |
|
325 |
|
326 |
/* |
327 |
* Write a byte to I/O space |
328 |
*/ |
329 |
|
330 |
void MOS6502_1541::write_byte_io(uint16 adr, uint8 byte) |
331 |
{ |
332 |
if ((adr & 0xfc00) == 0x1800) // VIA 1 |
333 |
switch (adr & 0xf) { |
334 |
case 0: |
335 |
via1_prb = byte; |
336 |
byte = ~via1_prb & via1_ddrb; |
337 |
IECLines = (byte << 6) & ((~byte ^ TheCIA2->IECLines) << 3) & 0x80 |
338 |
| (byte << 3) & 0x40; |
339 |
break; |
340 |
case 1: |
341 |
case 15: |
342 |
via1_pra = byte; |
343 |
break; |
344 |
case 2: |
345 |
via1_ddrb = byte; |
346 |
byte &= ~via1_prb; |
347 |
IECLines = (byte << 6) & ((~byte ^ TheCIA2->IECLines) << 3) & 0x80 |
348 |
| (byte << 3) & 0x40; |
349 |
break; |
350 |
case 3: |
351 |
via1_ddra = byte; |
352 |
break; |
353 |
case 4: |
354 |
case 6: |
355 |
via1_t1l = via1_t1l & 0xff00 | byte; |
356 |
break; |
357 |
case 5: |
358 |
via1_t1l = via1_t1l & 0xff | (byte << 8); |
359 |
via1_ifr &= 0xbf; |
360 |
via1_t1c = via1_t1l; |
361 |
break; |
362 |
case 7: |
363 |
via1_t1l = via1_t1l & 0xff | (byte << 8); |
364 |
break; |
365 |
case 8: |
366 |
via1_t2l = via1_t2l & 0xff00 | byte; |
367 |
break; |
368 |
case 9: |
369 |
via1_t2l = via1_t2l & 0xff | (byte << 8); |
370 |
via1_ifr &= 0xdf; |
371 |
via1_t2c = via1_t2l; |
372 |
break; |
373 |
case 10: |
374 |
via1_sr = byte; |
375 |
break; |
376 |
case 11: |
377 |
via1_acr = byte; |
378 |
break; |
379 |
case 12: |
380 |
via1_pcr = byte; |
381 |
break; |
382 |
case 13: |
383 |
via1_ifr &= ~byte; |
384 |
break; |
385 |
case 14: |
386 |
if (byte & 0x80) |
387 |
via1_ier |= byte & 0x7f; |
388 |
else |
389 |
via1_ier &= ~byte; |
390 |
break; |
391 |
} |
392 |
|
393 |
else if ((adr & 0xfc00) == 0x1c00) |
394 |
switch (adr & 0xf) { |
395 |
case 0: |
396 |
if ((via2_prb ^ byte) & 8) // Bit 3: Drive LED |
397 |
the_display->UpdateLEDs(byte & 8 ? 1 : 0, 0, 0, 0); |
398 |
if ((via2_prb ^ byte) & 3) // Bits 0/1: Stepper motor |
399 |
if ((via2_prb & 3) == ((byte+1) & 3)) |
400 |
the_job->MoveHeadOut(); |
401 |
else if ((via2_prb & 3) == ((byte-1) & 3)) |
402 |
the_job->MoveHeadIn(); |
403 |
via2_prb = byte & 0xef; |
404 |
break; |
405 |
case 1: |
406 |
case 15: |
407 |
via2_pra = byte; |
408 |
break; |
409 |
case 2: |
410 |
via2_ddrb = byte; |
411 |
break; |
412 |
case 3: |
413 |
via2_ddra = byte; |
414 |
break; |
415 |
case 4: |
416 |
case 6: |
417 |
via2_t1l = via2_t1l & 0xff00 | byte; |
418 |
break; |
419 |
case 5: |
420 |
via2_t1l = via2_t1l & 0xff | (byte << 8); |
421 |
via2_ifr &= 0xbf; |
422 |
via2_t1c = via2_t1l; |
423 |
break; |
424 |
case 7: |
425 |
via2_t1l = via2_t1l & 0xff | (byte << 8); |
426 |
break; |
427 |
case 8: |
428 |
via2_t2l = via2_t2l & 0xff00 | byte; |
429 |
break; |
430 |
case 9: |
431 |
via2_t2l = via2_t2l & 0xff | (byte << 8); |
432 |
via2_ifr &= 0xdf; |
433 |
via2_t2c = via2_t2l; |
434 |
break; |
435 |
case 10: |
436 |
via2_sr = byte; |
437 |
break; |
438 |
case 11: |
439 |
via2_acr = byte; |
440 |
break; |
441 |
case 12: |
442 |
via2_pcr = byte; |
443 |
break; |
444 |
case 13: |
445 |
via2_ifr &= ~byte; |
446 |
break; |
447 |
case 14: |
448 |
if (byte & 0x80) |
449 |
via2_ier |= byte & 0x7f; |
450 |
else |
451 |
via2_ier &= ~byte; |
452 |
break; |
453 |
} |
454 |
} |
455 |
|
456 |
|
457 |
/* |
458 |
* Write a byte to the CPU's address space |
459 |
*/ |
460 |
|
461 |
inline void MOS6502_1541::write_byte(uint16 adr, uint8 byte) |
462 |
{ |
463 |
if (adr < 0x1000) |
464 |
ram[adr & 0x7ff] = byte; |
465 |
else |
466 |
write_byte_io(adr, byte); |
467 |
} |
468 |
|
469 |
|
470 |
/* |
471 |
* Read byte from 6502/1541 address space (used by SAM) |
472 |
*/ |
473 |
|
474 |
uint8 MOS6502_1541::ExtReadByte(uint16 adr) |
475 |
{ |
476 |
return read_byte(adr); |
477 |
} |
478 |
|
479 |
|
480 |
/* |
481 |
* Write byte to 6502/1541 address space (used by SAM) |
482 |
*/ |
483 |
|
484 |
void MOS6502_1541::ExtWriteByte(uint16 adr, uint8 byte) |
485 |
{ |
486 |
write_byte(adr, byte); |
487 |
} |
488 |
|
489 |
|
490 |
/* |
491 |
* Adc instruction |
492 |
*/ |
493 |
|
494 |
inline void MOS6502_1541::do_adc(uint8 byte) |
495 |
{ |
496 |
if (!d_flag) { |
497 |
uint16 tmp; |
498 |
|
499 |
// Binary mode |
500 |
tmp = a + byte + (c_flag ? 1 : 0); |
501 |
c_flag = tmp > 0xff; |
502 |
v_flag = !((a ^ byte) & 0x80) && ((a ^ tmp) & 0x80); |
503 |
z_flag = n_flag = a = tmp; |
504 |
|
505 |
} else { |
506 |
uint16 al, ah; |
507 |
|
508 |
// Decimal mode |
509 |
al = (a & 0x0f) + (byte & 0x0f) + (c_flag ? 1 : 0); // Calculate lower nybble |
510 |
if (al > 9) al += 6; // BCD fixup for lower nybble |
511 |
|
512 |
ah = (a >> 4) + (byte >> 4); // Calculate upper nybble |
513 |
if (al > 0x0f) ah++; |
514 |
|
515 |
z_flag = a + byte + (c_flag ? 1 : 0); // Set flags |
516 |
n_flag = ah << 4; // Only highest bit used |
517 |
v_flag = (((ah << 4) ^ a) & 0x80) && !((a ^ byte) & 0x80); |
518 |
|
519 |
if (ah > 9) ah += 6; // BCD fixup for upper nybble |
520 |
c_flag = ah > 0x0f; // Set carry flag |
521 |
a = (ah << 4) | (al & 0x0f); // Compose result |
522 |
} |
523 |
} |
524 |
|
525 |
|
526 |
/* |
527 |
* Sbc instruction |
528 |
*/ |
529 |
|
530 |
inline void MOS6502_1541::do_sbc(uint8 byte) |
531 |
{ |
532 |
uint16 tmp = a - byte - (c_flag ? 0 : 1); |
533 |
|
534 |
if (!d_flag) { |
535 |
|
536 |
// Binary mode |
537 |
c_flag = tmp < 0x100; |
538 |
v_flag = ((a ^ tmp) & 0x80) && ((a ^ byte) & 0x80); |
539 |
z_flag = n_flag = a = tmp; |
540 |
|
541 |
} else { |
542 |
uint16 al, ah; |
543 |
|
544 |
// Decimal mode |
545 |
al = (a & 0x0f) - (byte & 0x0f) - (c_flag ? 0 : 1); // Calculate lower nybble |
546 |
ah = (a >> 4) - (byte >> 4); // Calculate upper nybble |
547 |
if (al & 0x10) { |
548 |
al -= 6; // BCD fixup for lower nybble |
549 |
ah--; |
550 |
} |
551 |
if (ah & 0x10) ah -= 6; // BCD fixup for upper nybble |
552 |
|
553 |
c_flag = tmp < 0x100; // Set flags |
554 |
v_flag = ((a ^ tmp) & 0x80) && ((a ^ byte) & 0x80); |
555 |
z_flag = n_flag = tmp; |
556 |
|
557 |
a = (ah << 4) | (al & 0x0f); // Compose result |
558 |
} |
559 |
} |
560 |
|
561 |
|
562 |
/* |
563 |
* Reset CPU |
564 |
*/ |
565 |
|
566 |
void MOS6502_1541::Reset(void) |
567 |
{ |
568 |
// IEC lines and VIA registers |
569 |
IECLines = 0xc0; |
570 |
|
571 |
via1_pra = via1_ddra = via1_prb = via1_ddrb = 0; |
572 |
via1_acr = via1_pcr = 0; |
573 |
via1_ifr = via1_ier = 0; |
574 |
via2_pra = via2_ddra = via2_prb = via2_ddrb = 0; |
575 |
via2_acr = via2_pcr = 0; |
576 |
via2_ifr = via2_ier = 0; |
577 |
|
578 |
// Clear all interrupt lines |
579 |
interrupt.intr_any = 0; |
580 |
|
581 |
// Read reset vector |
582 |
pc = read_word(0xfffc); |
583 |
state = 0; |
584 |
|
585 |
// Wake up 1541 |
586 |
Idle = false; |
587 |
} |
588 |
|
589 |
|
590 |
/* |
591 |
* Illegal opcode encountered |
592 |
*/ |
593 |
|
594 |
void MOS6502_1541::illegal_op(uint8 op, uint16 at) |
595 |
{ |
596 |
char illop_msg[80]; |
597 |
|
598 |
sprintf(illop_msg, "1541: Illegal opcode %02x at %04x.", op, at); |
599 |
if (ShowRequester(illop_msg, "Reset 1541", "Reset C64")) |
600 |
the_c64->Reset(); |
601 |
Reset(); |
602 |
} |
603 |
|
604 |
|
605 |
/* |
606 |
* Emulate one 6502 clock cycle |
607 |
*/ |
608 |
|
609 |
// Read byte from memory |
610 |
#define read_to(adr, to) \ |
611 |
to = read_byte(adr); |
612 |
|
613 |
// Read byte from memory, throw away result |
614 |
#define read_idle(adr) \ |
615 |
read_byte(adr); |
616 |
|
617 |
void MOS6502_1541::EmulateCycle(void) |
618 |
{ |
619 |
uint8 data, tmp; |
620 |
|
621 |
// Any pending interrupts in state 0 (opcode fetch)? |
622 |
if (!state && interrupt.intr_any) { |
623 |
if (interrupt.intr[INT_RESET]) |
624 |
Reset(); |
625 |
else if ((interrupt.intr[INT_VIA1IRQ] || interrupt.intr[INT_VIA2IRQ] || interrupt.intr[INT_IECIRQ]) && (the_c64->CycleCounter-first_irq_cycle >= 2) && !i_flag) |
626 |
state = 0x0008; |
627 |
} |
628 |
|
629 |
#define IS_CPU_1541 |
630 |
#include "CPU_emulcycle.h" |
631 |
|
632 |
// Extension opcode |
633 |
case O_EXT: |
634 |
if (pc < 0xc000) { |
635 |
illegal_op(0xf2, pc-1); |
636 |
break; |
637 |
} |
638 |
switch (read_byte(pc++)) { |
639 |
case 0x00: // Go to sleep in DOS idle loop if error flag is clear and no command received |
640 |
Idle = !(ram[0x26c] | ram[0x7c]); |
641 |
pc = 0xebff; |
642 |
Last; |
643 |
case 0x01: // Write sector |
644 |
the_job->WriteSector(); |
645 |
pc = 0xf5dc; |
646 |
Last; |
647 |
case 0x02: // Format track |
648 |
the_job->FormatTrack(); |
649 |
pc = 0xfd8b; |
650 |
Last; |
651 |
default: |
652 |
illegal_op(0xf2, pc-1); |
653 |
break; |
654 |
} |
655 |
break; |
656 |
|
657 |
default: |
658 |
illegal_op(op, pc-1); |
659 |
break; |
660 |
} |
661 |
} |