ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/Frodo4/Src/CPUC64.cpp
Revision: 1.2
Committed: 2003-07-01T17:51:17Z (20 years, 9 months ago) by cebix
Branch: MAIN
Changes since 1.1: +1 -1 lines
Log Message:
updated copyright date

File Contents

# Content
1 /*
2 * CPUC64.cpp - 6510 (C64) emulation (line based)
3 *
4 * Frodo (C) 1994-1997,2002-2003 Christian Bauer
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 /*
22 * Notes:
23 * ------
24 *
25 * - The EmulateLine() function is called for every emulated
26 * raster line. It has a cycle counter that is decremented
27 * by every executed opcode and if the counter goes below
28 * zero, the function returns.
29 * - Memory configurations:
30 * $01 $a000-$bfff $d000-$dfff $e000-$ffff
31 * -----------------------------------------------
32 * 0 RAM RAM RAM
33 * 1 RAM Char ROM RAM
34 * 2 RAM Char ROM Kernal ROM
35 * 3 Basic ROM Char ROM Kernal ROM
36 * 4 RAM RAM RAM
37 * 5 RAM I/O RAM
38 * 6 RAM I/O Kernal ROM
39 * 7 Basic ROM I/O Kernal ROM
40 * - All memory accesses are done with the read_byte() and
41 * write_byte() functions which also do the memory address
42 * decoding. The read_zp() and write_zp() functions allow
43 * faster access to the zero page, the pop_byte() and
44 * push_byte() macros for the stack.
45 * - If a write occurs to addresses 0 or 1, new_config is
46 * called to check whether the memory configuration has
47 * changed
48 * - The PC is either emulated with a 16 bit address or a
49 * direct memory pointer (for faster access), depending on
50 * the PC_IS_POINTER #define. In the latter case, a second
51 * pointer, pc_base, is kept to allow recalculating the
52 * 16 bit 6510 PC if it has to be pushed on the stack.
53 * - The possible interrupt sources are:
54 * INT_VICIRQ: I flag is checked, jump to ($fffe)
55 * INT_CIAIRQ: I flag is checked, jump to ($fffe)
56 * INT_NMI: Jump to ($fffa)
57 * INT_RESET: Jump to ($fffc)
58 * - Interrupts are not checked before every opcode but only
59 * at certain times:
60 * On entering EmulateLine()
61 * On CLI
62 * On PLP if the I flag was cleared
63 * On RTI if the I flag was cleared
64 * - The z_flag variable has the inverse meaning of the
65 * 6510 Z flag
66 * - Only the highest bit of the n_flag variable is used
67 * - The $f2 opcode that would normally crash the 6510 is
68 * used to implement emulator-specific functions, mainly
69 * those for the IEC routines
70 *
71 * Incompatibilities:
72 * ------------------
73 *
74 * - If PC_IS_POINTER is set, neither branches accross memory
75 * areas nor jumps to I/O space are possible
76 * - Extra cycles for crossing page boundaries are not
77 * accounted for
78 * - The cassette sense line is always closed
79 */
80
81 #include "sysdeps.h"
82
83 #include "CPUC64.h"
84 #include "C64.h"
85 #include "VIC.h"
86 #include "SID.h"
87 #include "CIA.h"
88 #include "REU.h"
89 #include "IEC.h"
90 #include "Display.h"
91 #include "Version.h"
92
93
94 enum {
95 INT_RESET = 3
96 };
97
98
99 /*
100 * 6510 constructor: Initialize registers
101 */
102
103 MOS6510::MOS6510(C64 *c64, uint8 *Ram, uint8 *Basic, uint8 *Kernal, uint8 *Char, uint8 *Color)
104 : the_c64(c64), ram(Ram), basic_rom(Basic), kernal_rom(Kernal), char_rom(Char), color_ram(Color)
105 {
106 a = x = y = 0;
107 sp = 0xff;
108 n_flag = z_flag = 0;
109 v_flag = d_flag = c_flag = false;
110 i_flag = true;
111 dfff_byte = 0x55;
112 borrowed_cycles = 0;
113 }
114
115
116 /*
117 * Reset CPU asynchronously
118 */
119
120 void MOS6510::AsyncReset(void)
121 {
122 interrupt.intr[INT_RESET] = true;
123 }
124
125
126 /*
127 * Raise NMI asynchronously (Restore key)
128 */
129
130 void MOS6510::AsyncNMI(void)
131 {
132 if (!nmi_state)
133 interrupt.intr[INT_NMI] = true;
134 }
135
136
137 /*
138 * Memory configuration has probably changed
139 */
140
141 void MOS6510::new_config(void)
142 {
143 uint8 port = ~ram[0] | ram[1];
144
145 basic_in = (port & 3) == 3;
146 kernal_in = port & 2;
147 char_in = (port & 3) && !(port & 4);
148 io_in = (port & 3) && (port & 4);
149 }
150
151
152 /*
153 * Read a byte from I/O / ROM space
154 */
155
156 inline uint8 MOS6510::read_byte_io(uint16 adr)
157 {
158 switch (adr >> 12) {
159 case 0xa:
160 case 0xb:
161 if (basic_in)
162 return basic_rom[adr & 0x1fff];
163 else
164 return ram[adr];
165 case 0xc:
166 return ram[adr];
167 case 0xd:
168 if (io_in)
169 switch ((adr >> 8) & 0x0f) {
170 case 0x0: // VIC
171 case 0x1:
172 case 0x2:
173 case 0x3:
174 return TheVIC->ReadRegister(adr & 0x3f);
175 case 0x4: // SID
176 case 0x5:
177 case 0x6:
178 case 0x7:
179 return TheSID->ReadRegister(adr & 0x1f);
180 case 0x8: // Color RAM
181 case 0x9:
182 case 0xa:
183 case 0xb:
184 return color_ram[adr & 0x03ff] | rand() & 0xf0;
185 case 0xc: // CIA 1
186 return TheCIA1->ReadRegister(adr & 0x0f);
187 case 0xd: // CIA 2
188 return TheCIA2->ReadRegister(adr & 0x0f);
189 case 0xe: // REU/Open I/O
190 case 0xf:
191 if ((adr & 0xfff0) == 0xdf00)
192 return TheREU->ReadRegister(adr & 0x0f);
193 else if (adr < 0xdfa0)
194 return rand();
195 else
196 return read_emulator_id(adr & 0x7f);
197 }
198 else if (char_in)
199 return char_rom[adr & 0x0fff];
200 else
201 return ram[adr];
202 case 0xe:
203 case 0xf:
204 if (kernal_in)
205 return kernal_rom[adr & 0x1fff];
206 else
207 return ram[adr];
208 default: // Can't happen
209 return 0;
210 }
211 }
212
213
214 /*
215 * Read a byte from the CPU's address space
216 */
217
218 uint8 MOS6510::read_byte(uint16 adr)
219 {
220 if (adr < 0xa000)
221 return ram[adr];
222 else
223 return read_byte_io(adr);
224 }
225
226
227 /*
228 * $dfa0-$dfff: Emulator identification
229 */
230
231 const char frodo_id[0x5c] = "FRODO\r(C) 1994-1997 CHRISTIAN BAUER";
232
233 uint8 MOS6510::read_emulator_id(uint16 adr)
234 {
235 switch (adr) {
236 case 0x7c: // $dffc: revision
237 return FRODO_REVISION << 4;
238 case 0x7d: // $dffd: version
239 return FRODO_VERSION;
240 case 0x7e: // $dffe returns 'F' (Frodo ID)
241 return 'F';
242 case 0x7f: // $dfff alternates between $55 and $aa
243 dfff_byte = ~dfff_byte;
244 return dfff_byte;
245 default:
246 return frodo_id[adr - 0x20];
247 }
248 }
249
250
251 /*
252 * Read a word (little-endian) from the CPU's address space
253 */
254
255 #if LITTLE_ENDIAN_UNALIGNED
256
257 inline uint16 MOS6510::read_word(uint16 adr)
258 {
259 switch (adr >> 12) {
260 case 0x0:
261 case 0x1:
262 case 0x2:
263 case 0x3:
264 case 0x4:
265 case 0x5:
266 case 0x6:
267 case 0x7:
268 case 0x8:
269 case 0x9:
270 return *(uint16*)&ram[adr];
271 break;
272 case 0xa:
273 case 0xb:
274 if (basic_in)
275 return *(uint16*)&basic_rom[adr & 0x1fff];
276 else
277 return *(uint16*)&ram[adr];
278 case 0xc:
279 return *(uint16*)&ram[adr];
280 case 0xd:
281 if (io_in)
282 return read_byte(adr) | (read_byte(adr+1) << 8);
283 else if (char_in)
284 return *(uint16*)&char_rom[adr & 0x0fff];
285 else
286 return *(uint16*)&ram[adr];
287 case 0xe:
288 case 0xf:
289 if (kernal_in)
290 return *(uint16*)&kernal_rom[adr & 0x1fff];
291 else
292 return *(uint16*)&ram[adr];
293 default: // Can't happen
294 return 0;
295 }
296 }
297
298 #else
299
300 inline uint16 MOS6510::read_word(uint16 adr)
301 {
302 return read_byte(adr) | (read_byte(adr+1) << 8);
303 }
304
305 #endif
306
307
308 /*
309 * Write byte to I/O space
310 */
311
312 void MOS6510::write_byte_io(uint16 adr, uint8 byte)
313 {
314 if (adr >= 0xe000) {
315 ram[adr] = byte;
316 if (adr == 0xff00)
317 TheREU->FF00Trigger();
318 } else if (io_in)
319 switch ((adr >> 8) & 0x0f) {
320 case 0x0: // VIC
321 case 0x1:
322 case 0x2:
323 case 0x3:
324 TheVIC->WriteRegister(adr & 0x3f, byte);
325 return;
326 case 0x4: // SID
327 case 0x5:
328 case 0x6:
329 case 0x7:
330 TheSID->WriteRegister(adr & 0x1f, byte);
331 return;
332 case 0x8: // Color RAM
333 case 0x9:
334 case 0xa:
335 case 0xb:
336 color_ram[adr & 0x03ff] = byte & 0x0f;
337 return;
338 case 0xc: // CIA 1
339 TheCIA1->WriteRegister(adr & 0x0f, byte);
340 return;
341 case 0xd: // CIA 2
342 TheCIA2->WriteRegister(adr & 0x0f, byte);
343 return;
344 case 0xe: // REU/Open I/O
345 case 0xf:
346 if ((adr & 0xfff0) == 0xdf00)
347 TheREU->WriteRegister(adr & 0x0f, byte);
348 return;
349 }
350 else
351 ram[adr] = byte;
352 }
353
354
355 /*
356 * Write a byte to the CPU's address space
357 */
358
359 inline void MOS6510::write_byte(uint16 adr, uint8 byte)
360 {
361 if (adr < 0xd000) {
362 ram[adr] = byte;
363 if (adr < 2)
364 new_config();
365 } else
366 write_byte_io(adr, byte);
367 }
368
369
370 /*
371 * Read a byte from the zeropage
372 */
373
374 inline uint8 MOS6510::read_zp(uint16 adr)
375 {
376 return ram[adr];
377 }
378
379
380 /*
381 * Read a word (little-endian) from the zeropage
382 */
383
384 inline uint16 MOS6510::read_zp_word(uint16 adr)
385 {
386 // !! zeropage word addressing wraps around !!
387 #if LITTLE_ENDIAN_UNALIGNED
388 return *(uint16 *)&ram[adr & 0xff];
389 #else
390 return ram[adr & 0xff] | (ram[(adr+1) & 0xff] << 8);
391 #endif
392 }
393
394
395 /*
396 * Write a byte to the zeropage
397 */
398
399 inline void MOS6510::write_zp(uint16 adr, uint8 byte)
400 {
401 ram[adr] = byte;
402
403 // Check if memory configuration may have changed.
404 if (adr < 2)
405 new_config();
406 }
407
408
409 /*
410 * Read byte from 6510 address space with special memory config (used by SAM)
411 */
412
413 uint8 MOS6510::ExtReadByte(uint16 adr)
414 {
415 // Save old memory configuration
416 bool bi = basic_in, ki = kernal_in, ci = char_in, ii = io_in;
417
418 // Set new configuration
419 basic_in = (ExtConfig & 3) == 3;
420 kernal_in = ExtConfig & 2;
421 char_in = (ExtConfig & 3) && ~(ExtConfig & 4);
422 io_in = (ExtConfig & 3) && (ExtConfig & 4);
423
424 // Read byte
425 uint8 byte = read_byte(adr);
426
427 // Restore old configuration
428 basic_in = bi; kernal_in = ki; char_in = ci; io_in = ii;
429
430 return byte;
431 }
432
433
434 /*
435 * Write byte to 6510 address space with special memory config (used by SAM)
436 */
437
438 void MOS6510::ExtWriteByte(uint16 adr, uint8 byte)
439 {
440 // Save old memory configuration
441 bool bi = basic_in, ki = kernal_in, ci = char_in, ii = io_in;
442
443 // Set new configuration
444 basic_in = (ExtConfig & 3) == 3;
445 kernal_in = ExtConfig & 2;
446 char_in = (ExtConfig & 3) && ~(ExtConfig & 4);
447 io_in = (ExtConfig & 3) && (ExtConfig & 4);
448
449 // Write byte
450 write_byte(adr, byte);
451
452 // Restore old configuration
453 basic_in = bi; kernal_in = ki; char_in = ci; io_in = ii;
454 }
455
456
457 /*
458 * Read byte from 6510 address space with current memory config (used by REU)
459 */
460
461 uint8 MOS6510::REUReadByte(uint16 adr)
462 {
463 return read_byte(adr);
464 }
465
466
467 /*
468 * Write byte to 6510 address space with current memory config (used by REU)
469 */
470
471 void MOS6510::REUWriteByte(uint16 adr, uint8 byte)
472 {
473 write_byte(adr, byte);
474 }
475
476
477 /*
478 * Jump to address
479 */
480
481 #if PC_IS_POINTER
482 void MOS6510::jump(uint16 adr)
483 {
484 if (adr < 0xa000) {
485 pc = ram + adr;
486 pc_base = ram;
487 } else
488 switch (adr >> 12) {
489 case 0xa:
490 case 0xb:
491 if (basic_in) {
492 pc = basic_rom + (adr & 0x1fff);
493 pc_base = basic_rom - 0xa000;
494 } else {
495 pc = ram + adr;
496 pc_base = ram;
497 }
498 break;
499 case 0xc:
500 pc = ram + adr;
501 pc_base = ram;
502 break;
503 case 0xd:
504 if (io_in)
505 illegal_jump(pc-pc_base, adr);
506 else if (char_in) {
507 pc = char_rom + (adr & 0x0fff);
508 pc_base = char_rom - 0xd000;
509 } else {
510 pc = ram + adr;
511 pc_base = ram;
512 }
513 break;
514 case 0xe:
515 case 0xf:
516 if (kernal_in) {
517 pc = kernal_rom + (adr & 0x1fff);
518 pc_base = kernal_rom - 0xe000;
519 } else {
520 pc = ram + adr;
521 pc_base = ram;
522 }
523 break;
524 }
525 }
526 #else
527 inline void MOS6510::jump(uint16 adr)
528 {
529 pc = adr;
530 }
531 #endif
532
533
534 /*
535 * Adc instruction
536 */
537
538 void MOS6510::do_adc(uint8 byte)
539 {
540 if (!d_flag) {
541 uint16 tmp;
542
543 // Binary mode
544 tmp = a + byte + (c_flag ? 1 : 0);
545 c_flag = tmp > 0xff;
546 v_flag = !((a ^ byte) & 0x80) && ((a ^ tmp) & 0x80);
547 z_flag = n_flag = a = tmp;
548
549 } else {
550 uint16 al, ah;
551
552 // Decimal mode
553 al = (a & 0x0f) + (byte & 0x0f) + (c_flag ? 1 : 0); // Calculate lower nybble
554 if (al > 9) al += 6; // BCD fixup for lower nybble
555
556 ah = (a >> 4) + (byte >> 4); // Calculate upper nybble
557 if (al > 0x0f) ah++;
558
559 z_flag = a + byte + (c_flag ? 1 : 0); // Set flags
560 n_flag = ah << 4; // Only highest bit used
561 v_flag = (((ah << 4) ^ a) & 0x80) && !((a ^ byte) & 0x80);
562
563 if (ah > 9) ah += 6; // BCD fixup for upper nybble
564 c_flag = ah > 0x0f; // Set carry flag
565 a = (ah << 4) | (al & 0x0f); // Compose result
566 }
567 }
568
569
570 /*
571 * Sbc instruction
572 */
573
574 void MOS6510::do_sbc(uint8 byte)
575 {
576 uint16 tmp = a - byte - (c_flag ? 0 : 1);
577
578 if (!d_flag) {
579
580 // Binary mode
581 c_flag = tmp < 0x100;
582 v_flag = ((a ^ tmp) & 0x80) && ((a ^ byte) & 0x80);
583 z_flag = n_flag = a = tmp;
584
585 } else {
586 uint16 al, ah;
587
588 // Decimal mode
589 al = (a & 0x0f) - (byte & 0x0f) - (c_flag ? 0 : 1); // Calculate lower nybble
590 ah = (a >> 4) - (byte >> 4); // Calculate upper nybble
591 if (al & 0x10) {
592 al -= 6; // BCD fixup for lower nybble
593 ah--;
594 }
595 if (ah & 0x10) ah -= 6; // BCD fixup for upper nybble
596
597 c_flag = tmp < 0x100; // Set flags
598 v_flag = ((a ^ tmp) & 0x80) && ((a ^ byte) & 0x80);
599 z_flag = n_flag = tmp;
600
601 a = (ah << 4) | (al & 0x0f); // Compose result
602 }
603 }
604
605
606 /*
607 * Get 6510 register state
608 */
609
610 void MOS6510::GetState(MOS6510State *s)
611 {
612 s->a = a;
613 s->x = x;
614 s->y = y;
615
616 s->p = 0x20 | (n_flag & 0x80);
617 if (v_flag) s->p |= 0x40;
618 if (d_flag) s->p |= 0x08;
619 if (i_flag) s->p |= 0x04;
620 if (!z_flag) s->p |= 0x02;
621 if (c_flag) s->p |= 0x01;
622
623 s->ddr = ram[0];
624 s->pr = ram[1] & 0x3f;
625
626 #if PC_IS_POINTER
627 s->pc = pc - pc_base;
628 #else
629 s->pc = pc;
630 #endif
631 s->sp = sp | 0x0100;
632
633 s->intr[INT_VICIRQ] = interrupt.intr[INT_VICIRQ];
634 s->intr[INT_CIAIRQ] = interrupt.intr[INT_CIAIRQ];
635 s->intr[INT_NMI] = interrupt.intr[INT_NMI];
636 s->intr[INT_RESET] = interrupt.intr[INT_RESET];
637 s->nmi_state = nmi_state;
638 s->dfff_byte = dfff_byte;
639 s->instruction_complete = true;
640 }
641
642
643 /*
644 * Restore 6510 state
645 */
646
647 void MOS6510::SetState(MOS6510State *s)
648 {
649 a = s->a;
650 x = s->x;
651 y = s->y;
652
653 n_flag = s->p;
654 v_flag = s->p & 0x40;
655 d_flag = s->p & 0x08;
656 i_flag = s->p & 0x04;
657 z_flag = !(s->p & 0x02);
658 c_flag = s->p & 0x01;
659
660 ram[0] = s->ddr;
661 ram[1] = s->pr;
662 new_config();
663
664 jump(s->pc);
665 sp = s->sp & 0xff;
666
667 interrupt.intr[INT_VICIRQ] = s->intr[INT_VICIRQ];
668 interrupt.intr[INT_CIAIRQ] = s->intr[INT_CIAIRQ];
669 interrupt.intr[INT_NMI] = s->intr[INT_NMI];
670 interrupt.intr[INT_RESET] = s->intr[INT_RESET];
671 nmi_state = s->nmi_state;
672 dfff_byte = s->dfff_byte;
673 }
674
675
676 /*
677 * Reset CPU
678 */
679
680 void MOS6510::Reset(void)
681 {
682 // Delete 'CBM80' if present
683 if (ram[0x8004] == 0xc3 && ram[0x8005] == 0xc2 && ram[0x8006] == 0xcd
684 && ram[0x8007] == 0x38 && ram[0x8008] == 0x30)
685 ram[0x8004] = 0;
686
687 // Initialize extra 6510 registers and memory configuration
688 ram[0] = ram[1] = 0;
689 new_config();
690
691 // Clear all interrupt lines
692 interrupt.intr_any = 0;
693 nmi_state = false;
694
695 // Read reset vector
696 jump(read_word(0xfffc));
697 }
698
699
700 /*
701 * Illegal opcode encountered
702 */
703
704 void MOS6510::illegal_op(uint8 op, uint16 at)
705 {
706 char illop_msg[80];
707
708 sprintf(illop_msg, "Illegal opcode %02x at %04x.", op, at);
709 ShowRequester(illop_msg, "Reset");
710 the_c64->Reset();
711 Reset();
712 }
713
714
715 /*
716 * Jump to illegal address space (PC_IS_POINTER only)
717 */
718
719 void MOS6510::illegal_jump(uint16 at, uint16 to)
720 {
721 char illop_msg[80];
722
723 sprintf(illop_msg, "Jump to I/O space at %04x to %04x.", at, to);
724 ShowRequester(illop_msg, "Reset");
725 the_c64->Reset();
726 Reset();
727 }
728
729
730 /*
731 * Stack macros
732 */
733
734 // Pop a byte from the stack
735 #define pop_byte() ram[(++sp) | 0x0100]
736
737 // Push a byte onto the stack
738 #define push_byte(byte) (ram[(sp--) & 0xff | 0x0100] = (byte))
739
740 // Pop processor flags from the stack
741 #define pop_flags() \
742 n_flag = tmp = pop_byte(); \
743 v_flag = tmp & 0x40; \
744 d_flag = tmp & 0x08; \
745 i_flag = tmp & 0x04; \
746 z_flag = !(tmp & 0x02); \
747 c_flag = tmp & 0x01;
748
749 // Push processor flags onto the stack
750 #define push_flags(b_flag) \
751 tmp = 0x20 | (n_flag & 0x80); \
752 if (v_flag) tmp |= 0x40; \
753 if (b_flag) tmp |= 0x10; \
754 if (d_flag) tmp |= 0x08; \
755 if (i_flag) tmp |= 0x04; \
756 if (!z_flag) tmp |= 0x02; \
757 if (c_flag) tmp |= 0x01; \
758 push_byte(tmp);
759
760
761 /*
762 * Emulate cycles_left worth of 6510 instructions
763 * Returns number of cycles of last instruction
764 */
765
766 int MOS6510::EmulateLine(int cycles_left)
767 {
768 uint8 tmp, tmp2;
769 uint16 adr; // Used by read_adr_abs()!
770 int last_cycles = 0;
771
772 // Any pending interrupts?
773 if (interrupt.intr_any) {
774 handle_int:
775 if (interrupt.intr[INT_RESET])
776 Reset();
777
778 else if (interrupt.intr[INT_NMI]) {
779 interrupt.intr[INT_NMI] = false; // Simulate an edge-triggered input
780 #if PC_IS_POINTER
781 push_byte((pc-pc_base) >> 8); push_byte(pc-pc_base);
782 #else
783 push_byte(pc >> 8); push_byte(pc);
784 #endif
785 push_flags(false);
786 i_flag = true;
787 jump(read_word(0xfffa));
788 last_cycles = 7;
789
790 } else if ((interrupt.intr[INT_VICIRQ] || interrupt.intr[INT_CIAIRQ]) && !i_flag) {
791 #if PC_IS_POINTER
792 push_byte((pc-pc_base) >> 8); push_byte(pc-pc_base);
793 #else
794 push_byte(pc >> 8); push_byte(pc);
795 #endif
796 push_flags(false);
797 i_flag = true;
798 jump(read_word(0xfffe));
799 last_cycles = 7;
800 }
801 }
802
803 #include "CPU_emulline.h"
804
805 // Extension opcode
806 case 0xf2:
807 #if PC_IS_POINTER
808 if ((pc-pc_base) < 0xe000) {
809 illegal_op(0xf2, pc-pc_base-1);
810 #else
811 if (pc < 0xe000) {
812 illegal_op(0xf2, pc-1);
813 #endif
814 break;
815 }
816 switch (read_byte_imm()) {
817 case 0x00:
818 ram[0x90] |= TheIEC->Out(ram[0x95], ram[0xa3] & 0x80);
819 c_flag = false;
820 jump(0xedac);
821 break;
822 case 0x01:
823 ram[0x90] |= TheIEC->OutATN(ram[0x95]);
824 c_flag = false;
825 jump(0xedac);
826 break;
827 case 0x02:
828 ram[0x90] |= TheIEC->OutSec(ram[0x95]);
829 c_flag = false;
830 jump(0xedac);
831 break;
832 case 0x03:
833 ram[0x90] |= TheIEC->In(&a);
834 set_nz(a);
835 c_flag = false;
836 jump(0xedac);
837 break;
838 case 0x04:
839 TheIEC->SetATN();
840 jump(0xedfb);
841 break;
842 case 0x05:
843 TheIEC->RelATN();
844 jump(0xedac);
845 break;
846 case 0x06:
847 TheIEC->Turnaround();
848 jump(0xedac);
849 break;
850 case 0x07:
851 TheIEC->Release();
852 jump(0xedac);
853 break;
854 default:
855 #if PC_IS_POINTER
856 illegal_op(0xf2, pc-pc_base-1);
857 #else
858 illegal_op(0xf2, pc-1);
859 #endif
860 break;
861 }
862 break;
863 }
864 }
865 return last_cycles;
866 }