ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/slirp/tcp_input.c
Revision: 1.1
Committed: 2005-05-13T09:00:59Z (19 years ago) by gbeauche
Content type: text/plain
Branch: MAIN
CVS Tags: nigel-build-17
Log Message:
slirp user mode network emulation code from qemu

File Contents

# Content
1 /*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)tcp_input.c 8.5 (Berkeley) 4/10/94
34 * tcp_input.c,v 1.10 1994/10/13 18:36:32 wollman Exp
35 */
36
37 /*
38 * Changes and additions relating to SLiRP
39 * Copyright (c) 1995 Danny Gasparovski.
40 *
41 * Please read the file COPYRIGHT for the
42 * terms and conditions of the copyright.
43 */
44
45 #include <slirp.h>
46 #include "ip_icmp.h"
47
48 struct socket tcb;
49
50 int tcprexmtthresh = 3;
51 struct socket *tcp_last_so = &tcb;
52
53 tcp_seq tcp_iss; /* tcp initial send seq # */
54
55 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
56
57 /* for modulo comparisons of timestamps */
58 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
59 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
60
61 /*
62 * Insert segment ti into reassembly queue of tcp with
63 * control block tp. Return TH_FIN if reassembly now includes
64 * a segment with FIN. The macro form does the common case inline
65 * (segment is the next to be received on an established connection,
66 * and the queue is empty), avoiding linkage into and removal
67 * from the queue and repetition of various conversions.
68 * Set DELACK for segments received in order, but ack immediately
69 * when segments are out of order (so fast retransmit can work).
70 */
71 #ifdef TCP_ACK_HACK
72 #define TCP_REASS(tp, ti, m, so, flags) {\
73 if ((ti)->ti_seq == (tp)->rcv_nxt && \
74 (tp)->seg_next == (tcpiphdrp_32)(tp) && \
75 (tp)->t_state == TCPS_ESTABLISHED) {\
76 if (ti->ti_flags & TH_PUSH) \
77 tp->t_flags |= TF_ACKNOW; \
78 else \
79 tp->t_flags |= TF_DELACK; \
80 (tp)->rcv_nxt += (ti)->ti_len; \
81 flags = (ti)->ti_flags & TH_FIN; \
82 tcpstat.tcps_rcvpack++;\
83 tcpstat.tcps_rcvbyte += (ti)->ti_len;\
84 if (so->so_emu) { \
85 if (tcp_emu((so),(m))) sbappend((so), (m)); \
86 } else \
87 sbappend((so), (m)); \
88 /* sorwakeup(so); */ \
89 } else {\
90 (flags) = tcp_reass((tp), (ti), (m)); \
91 tp->t_flags |= TF_ACKNOW; \
92 } \
93 }
94 #else
95 #define TCP_REASS(tp, ti, m, so, flags) { \
96 if ((ti)->ti_seq == (tp)->rcv_nxt && \
97 (tp)->seg_next == (tcpiphdrp_32)(tp) && \
98 (tp)->t_state == TCPS_ESTABLISHED) { \
99 tp->t_flags |= TF_DELACK; \
100 (tp)->rcv_nxt += (ti)->ti_len; \
101 flags = (ti)->ti_flags & TH_FIN; \
102 tcpstat.tcps_rcvpack++;\
103 tcpstat.tcps_rcvbyte += (ti)->ti_len;\
104 if (so->so_emu) { \
105 if (tcp_emu((so),(m))) sbappend(so, (m)); \
106 } else \
107 sbappend((so), (m)); \
108 /* sorwakeup(so); */ \
109 } else { \
110 (flags) = tcp_reass((tp), (ti), (m)); \
111 tp->t_flags |= TF_ACKNOW; \
112 } \
113 }
114 #endif
115
116 int
117 tcp_reass(tp, ti, m)
118 register struct tcpcb *tp;
119 register struct tcpiphdr *ti;
120 struct mbuf *m;
121 {
122 register struct tcpiphdr *q;
123 struct socket *so = tp->t_socket;
124 int flags;
125
126 /*
127 * Call with ti==0 after become established to
128 * force pre-ESTABLISHED data up to user socket.
129 */
130 if (ti == 0)
131 goto present;
132
133 /*
134 * Find a segment which begins after this one does.
135 */
136 for (q = (struct tcpiphdr *)tp->seg_next; q != (struct tcpiphdr *)tp;
137 q = (struct tcpiphdr *)q->ti_next)
138 if (SEQ_GT(q->ti_seq, ti->ti_seq))
139 break;
140
141 /*
142 * If there is a preceding segment, it may provide some of
143 * our data already. If so, drop the data from the incoming
144 * segment. If it provides all of our data, drop us.
145 */
146 if ((struct tcpiphdr *)q->ti_prev != (struct tcpiphdr *)tp) {
147 register int i;
148 q = (struct tcpiphdr *)q->ti_prev;
149 /* conversion to int (in i) handles seq wraparound */
150 i = q->ti_seq + q->ti_len - ti->ti_seq;
151 if (i > 0) {
152 if (i >= ti->ti_len) {
153 tcpstat.tcps_rcvduppack++;
154 tcpstat.tcps_rcvdupbyte += ti->ti_len;
155 m_freem(m);
156 /*
157 * Try to present any queued data
158 * at the left window edge to the user.
159 * This is needed after the 3-WHS
160 * completes.
161 */
162 goto present; /* ??? */
163 }
164 m_adj(m, i);
165 ti->ti_len -= i;
166 ti->ti_seq += i;
167 }
168 q = (struct tcpiphdr *)(q->ti_next);
169 }
170 tcpstat.tcps_rcvoopack++;
171 tcpstat.tcps_rcvoobyte += ti->ti_len;
172 REASS_MBUF(ti) = (mbufp_32) m; /* XXX */
173
174 /*
175 * While we overlap succeeding segments trim them or,
176 * if they are completely covered, dequeue them.
177 */
178 while (q != (struct tcpiphdr *)tp) {
179 register int i = (ti->ti_seq + ti->ti_len) - q->ti_seq;
180 if (i <= 0)
181 break;
182 if (i < q->ti_len) {
183 q->ti_seq += i;
184 q->ti_len -= i;
185 m_adj((struct mbuf *) REASS_MBUF(q), i);
186 break;
187 }
188 q = (struct tcpiphdr *)q->ti_next;
189 m = (struct mbuf *) REASS_MBUF((struct tcpiphdr *)q->ti_prev);
190 remque_32((void *)(q->ti_prev));
191 m_freem(m);
192 }
193
194 /*
195 * Stick new segment in its place.
196 */
197 insque_32(ti, (void *)(q->ti_prev));
198
199 present:
200 /*
201 * Present data to user, advancing rcv_nxt through
202 * completed sequence space.
203 */
204 if (!TCPS_HAVEESTABLISHED(tp->t_state))
205 return (0);
206 ti = (struct tcpiphdr *) tp->seg_next;
207 if (ti == (struct tcpiphdr *)tp || ti->ti_seq != tp->rcv_nxt)
208 return (0);
209 if (tp->t_state == TCPS_SYN_RECEIVED && ti->ti_len)
210 return (0);
211 do {
212 tp->rcv_nxt += ti->ti_len;
213 flags = ti->ti_flags & TH_FIN;
214 remque_32(ti);
215 m = (struct mbuf *) REASS_MBUF(ti); /* XXX */
216 ti = (struct tcpiphdr *)ti->ti_next;
217 /* if (so->so_state & SS_FCANTRCVMORE) */
218 if (so->so_state & SS_FCANTSENDMORE)
219 m_freem(m);
220 else {
221 if (so->so_emu) {
222 if (tcp_emu(so,m)) sbappend(so, m);
223 } else
224 sbappend(so, m);
225 }
226 } while (ti != (struct tcpiphdr *)tp && ti->ti_seq == tp->rcv_nxt);
227 /* sorwakeup(so); */
228 return (flags);
229 }
230
231 /*
232 * TCP input routine, follows pages 65-76 of the
233 * protocol specification dated September, 1981 very closely.
234 */
235 void
236 tcp_input(m, iphlen, inso)
237 register struct mbuf *m;
238 int iphlen;
239 struct socket *inso;
240 {
241 struct ip save_ip, *ip;
242 register struct tcpiphdr *ti;
243 caddr_t optp = NULL;
244 int optlen = 0;
245 int len, tlen, off;
246 register struct tcpcb *tp = 0;
247 register int tiflags;
248 struct socket *so = 0;
249 int todrop, acked, ourfinisacked, needoutput = 0;
250 /* int dropsocket = 0; */
251 int iss = 0;
252 u_long tiwin;
253 int ret;
254 /* int ts_present = 0; */
255
256 DEBUG_CALL("tcp_input");
257 DEBUG_ARGS((dfd," m = %8lx iphlen = %2d inso = %lx\n",
258 (long )m, iphlen, (long )inso ));
259
260 /*
261 * If called with m == 0, then we're continuing the connect
262 */
263 if (m == NULL) {
264 so = inso;
265
266 /* Re-set a few variables */
267 tp = sototcpcb(so);
268 m = so->so_m;
269 so->so_m = 0;
270 ti = so->so_ti;
271 tiwin = ti->ti_win;
272 tiflags = ti->ti_flags;
273
274 goto cont_conn;
275 }
276
277
278 tcpstat.tcps_rcvtotal++;
279 /*
280 * Get IP and TCP header together in first mbuf.
281 * Note: IP leaves IP header in first mbuf.
282 */
283 ti = mtod(m, struct tcpiphdr *);
284 if (iphlen > sizeof(struct ip )) {
285 ip_stripoptions(m, (struct mbuf *)0);
286 iphlen=sizeof(struct ip );
287 }
288 /* XXX Check if too short */
289
290
291 /*
292 * Save a copy of the IP header in case we want restore it
293 * for sending an ICMP error message in response.
294 */
295 ip=mtod(m, struct ip *);
296 save_ip = *ip;
297 save_ip.ip_len+= iphlen;
298
299 /*
300 * Checksum extended TCP header and data.
301 */
302 tlen = ((struct ip *)ti)->ip_len;
303 ti->ti_next = ti->ti_prev = 0;
304 ti->ti_x1 = 0;
305 ti->ti_len = htons((u_int16_t)tlen);
306 len = sizeof(struct ip ) + tlen;
307 /* keep checksum for ICMP reply
308 * ti->ti_sum = cksum(m, len);
309 * if (ti->ti_sum) { */
310 if(cksum(m, len)) {
311 tcpstat.tcps_rcvbadsum++;
312 goto drop;
313 }
314
315 /*
316 * Check that TCP offset makes sense,
317 * pull out TCP options and adjust length. XXX
318 */
319 off = ti->ti_off << 2;
320 if (off < sizeof (struct tcphdr) || off > tlen) {
321 tcpstat.tcps_rcvbadoff++;
322 goto drop;
323 }
324 tlen -= off;
325 ti->ti_len = tlen;
326 if (off > sizeof (struct tcphdr)) {
327 optlen = off - sizeof (struct tcphdr);
328 optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
329
330 /*
331 * Do quick retrieval of timestamp options ("options
332 * prediction?"). If timestamp is the only option and it's
333 * formatted as recommended in RFC 1323 appendix A, we
334 * quickly get the values now and not bother calling
335 * tcp_dooptions(), etc.
336 */
337 /* if ((optlen == TCPOLEN_TSTAMP_APPA ||
338 * (optlen > TCPOLEN_TSTAMP_APPA &&
339 * optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
340 * *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
341 * (ti->ti_flags & TH_SYN) == 0) {
342 * ts_present = 1;
343 * ts_val = ntohl(*(u_int32_t *)(optp + 4));
344 * ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
345 * optp = NULL; / * we've parsed the options * /
346 * }
347 */
348 }
349 tiflags = ti->ti_flags;
350
351 /*
352 * Convert TCP protocol specific fields to host format.
353 */
354 NTOHL(ti->ti_seq);
355 NTOHL(ti->ti_ack);
356 NTOHS(ti->ti_win);
357 NTOHS(ti->ti_urp);
358
359 /*
360 * Drop TCP, IP headers and TCP options.
361 */
362 m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
363 m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
364
365 /*
366 * Locate pcb for segment.
367 */
368 findso:
369 so = tcp_last_so;
370 if (so->so_fport != ti->ti_dport ||
371 so->so_lport != ti->ti_sport ||
372 so->so_laddr.s_addr != ti->ti_src.s_addr ||
373 so->so_faddr.s_addr != ti->ti_dst.s_addr) {
374 so = solookup(&tcb, ti->ti_src, ti->ti_sport,
375 ti->ti_dst, ti->ti_dport);
376 if (so)
377 tcp_last_so = so;
378 ++tcpstat.tcps_socachemiss;
379 }
380
381 /*
382 * If the state is CLOSED (i.e., TCB does not exist) then
383 * all data in the incoming segment is discarded.
384 * If the TCB exists but is in CLOSED state, it is embryonic,
385 * but should either do a listen or a connect soon.
386 *
387 * state == CLOSED means we've done socreate() but haven't
388 * attached it to a protocol yet...
389 *
390 * XXX If a TCB does not exist, and the TH_SYN flag is
391 * the only flag set, then create a session, mark it
392 * as if it was LISTENING, and continue...
393 */
394 if (so == 0) {
395 if ((tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) != TH_SYN)
396 goto dropwithreset;
397
398 if ((so = socreate()) == NULL)
399 goto dropwithreset;
400 if (tcp_attach(so) < 0) {
401 free(so); /* Not sofree (if it failed, it's not insqued) */
402 goto dropwithreset;
403 }
404
405 sbreserve(&so->so_snd, tcp_sndspace);
406 sbreserve(&so->so_rcv, tcp_rcvspace);
407
408 /* tcp_last_so = so; */ /* XXX ? */
409 /* tp = sototcpcb(so); */
410
411 so->so_laddr = ti->ti_src;
412 so->so_lport = ti->ti_sport;
413 so->so_faddr = ti->ti_dst;
414 so->so_fport = ti->ti_dport;
415
416 if ((so->so_iptos = tcp_tos(so)) == 0)
417 so->so_iptos = ((struct ip *)ti)->ip_tos;
418
419 tp = sototcpcb(so);
420 tp->t_state = TCPS_LISTEN;
421 }
422
423 /*
424 * If this is a still-connecting socket, this probably
425 * a retransmit of the SYN. Whether it's a retransmit SYN
426 * or something else, we nuke it.
427 */
428 if (so->so_state & SS_ISFCONNECTING)
429 goto drop;
430
431 tp = sototcpcb(so);
432
433 /* XXX Should never fail */
434 if (tp == 0)
435 goto dropwithreset;
436 if (tp->t_state == TCPS_CLOSED)
437 goto drop;
438
439 /* Unscale the window into a 32-bit value. */
440 /* if ((tiflags & TH_SYN) == 0)
441 * tiwin = ti->ti_win << tp->snd_scale;
442 * else
443 */
444 tiwin = ti->ti_win;
445
446 /*
447 * Segment received on connection.
448 * Reset idle time and keep-alive timer.
449 */
450 tp->t_idle = 0;
451 if (so_options)
452 tp->t_timer[TCPT_KEEP] = tcp_keepintvl;
453 else
454 tp->t_timer[TCPT_KEEP] = tcp_keepidle;
455
456 /*
457 * Process options if not in LISTEN state,
458 * else do it below (after getting remote address).
459 */
460 if (optp && tp->t_state != TCPS_LISTEN)
461 tcp_dooptions(tp, (u_char *)optp, optlen, ti);
462 /* , */
463 /* &ts_present, &ts_val, &ts_ecr); */
464
465 /*
466 * Header prediction: check for the two common cases
467 * of a uni-directional data xfer. If the packet has
468 * no control flags, is in-sequence, the window didn't
469 * change and we're not retransmitting, it's a
470 * candidate. If the length is zero and the ack moved
471 * forward, we're the sender side of the xfer. Just
472 * free the data acked & wake any higher level process
473 * that was blocked waiting for space. If the length
474 * is non-zero and the ack didn't move, we're the
475 * receiver side. If we're getting packets in-order
476 * (the reassembly queue is empty), add the data to
477 * the socket buffer and note that we need a delayed ack.
478 *
479 * XXX Some of these tests are not needed
480 * eg: the tiwin == tp->snd_wnd prevents many more
481 * predictions.. with no *real* advantage..
482 */
483 if (tp->t_state == TCPS_ESTABLISHED &&
484 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
485 /* (!ts_present || TSTMP_GEQ(ts_val, tp->ts_recent)) && */
486 ti->ti_seq == tp->rcv_nxt &&
487 tiwin && tiwin == tp->snd_wnd &&
488 tp->snd_nxt == tp->snd_max) {
489 /*
490 * If last ACK falls within this segment's sequence numbers,
491 * record the timestamp.
492 */
493 /* if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
494 * SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) {
495 * tp->ts_recent_age = tcp_now;
496 * tp->ts_recent = ts_val;
497 * }
498 */
499 if (ti->ti_len == 0) {
500 if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
501 SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
502 tp->snd_cwnd >= tp->snd_wnd) {
503 /*
504 * this is a pure ack for outstanding data.
505 */
506 ++tcpstat.tcps_predack;
507 /* if (ts_present)
508 * tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
509 * else
510 */ if (tp->t_rtt &&
511 SEQ_GT(ti->ti_ack, tp->t_rtseq))
512 tcp_xmit_timer(tp, tp->t_rtt);
513 acked = ti->ti_ack - tp->snd_una;
514 tcpstat.tcps_rcvackpack++;
515 tcpstat.tcps_rcvackbyte += acked;
516 sbdrop(&so->so_snd, acked);
517 tp->snd_una = ti->ti_ack;
518 m_freem(m);
519
520 /*
521 * If all outstanding data are acked, stop
522 * retransmit timer, otherwise restart timer
523 * using current (possibly backed-off) value.
524 * If process is waiting for space,
525 * wakeup/selwakeup/signal. If data
526 * are ready to send, let tcp_output
527 * decide between more output or persist.
528 */
529 if (tp->snd_una == tp->snd_max)
530 tp->t_timer[TCPT_REXMT] = 0;
531 else if (tp->t_timer[TCPT_PERSIST] == 0)
532 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
533
534 /*
535 * There's room in so_snd, sowwakup will read()
536 * from the socket if we can
537 */
538 /* if (so->so_snd.sb_flags & SB_NOTIFY)
539 * sowwakeup(so);
540 */
541 /*
542 * This is called because sowwakeup might have
543 * put data into so_snd. Since we don't so sowwakeup,
544 * we don't need this.. XXX???
545 */
546 if (so->so_snd.sb_cc)
547 (void) tcp_output(tp);
548
549 return;
550 }
551 } else if (ti->ti_ack == tp->snd_una &&
552 tp->seg_next == (tcpiphdrp_32)tp &&
553 ti->ti_len <= sbspace(&so->so_rcv)) {
554 /*
555 * this is a pure, in-sequence data packet
556 * with nothing on the reassembly queue and
557 * we have enough buffer space to take it.
558 */
559 ++tcpstat.tcps_preddat;
560 tp->rcv_nxt += ti->ti_len;
561 tcpstat.tcps_rcvpack++;
562 tcpstat.tcps_rcvbyte += ti->ti_len;
563 /*
564 * Add data to socket buffer.
565 */
566 if (so->so_emu) {
567 if (tcp_emu(so,m)) sbappend(so, m);
568 } else
569 sbappend(so, m);
570
571 /*
572 * XXX This is called when data arrives. Later, check
573 * if we can actually write() to the socket
574 * XXX Need to check? It's be NON_BLOCKING
575 */
576 /* sorwakeup(so); */
577
578 /*
579 * If this is a short packet, then ACK now - with Nagel
580 * congestion avoidance sender won't send more until
581 * he gets an ACK.
582 *
583 * Here are 3 interpretations of what should happen.
584 * The best (for me) is to delay-ack everything except
585 * if it's a one-byte packet containing an ESC
586 * (this means it's an arrow key (or similar) sent using
587 * Nagel, hence there will be no echo)
588 * The first of these is the original, the second is the
589 * middle ground between the other 2
590 */
591 /* if (((unsigned)ti->ti_len < tp->t_maxseg)) {
592 */
593 /* if (((unsigned)ti->ti_len < tp->t_maxseg &&
594 * (so->so_iptos & IPTOS_LOWDELAY) == 0) ||
595 * ((so->so_iptos & IPTOS_LOWDELAY) &&
596 * ((struct tcpiphdr_2 *)ti)->first_char == (char)27)) {
597 */
598 if ((unsigned)ti->ti_len == 1 &&
599 ((struct tcpiphdr_2 *)ti)->first_char == (char)27) {
600 tp->t_flags |= TF_ACKNOW;
601 tcp_output(tp);
602 } else {
603 tp->t_flags |= TF_DELACK;
604 }
605 return;
606 }
607 } /* header prediction */
608 /*
609 * Calculate amount of space in receive window,
610 * and then do TCP input processing.
611 * Receive window is amount of space in rcv queue,
612 * but not less than advertised window.
613 */
614 { int win;
615 win = sbspace(&so->so_rcv);
616 if (win < 0)
617 win = 0;
618 tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt));
619 }
620
621 switch (tp->t_state) {
622
623 /*
624 * If the state is LISTEN then ignore segment if it contains an RST.
625 * If the segment contains an ACK then it is bad and send a RST.
626 * If it does not contain a SYN then it is not interesting; drop it.
627 * Don't bother responding if the destination was a broadcast.
628 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
629 * tp->iss, and send a segment:
630 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
631 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
632 * Fill in remote peer address fields if not previously specified.
633 * Enter SYN_RECEIVED state, and process any other fields of this
634 * segment in this state.
635 */
636 case TCPS_LISTEN: {
637
638 if (tiflags & TH_RST)
639 goto drop;
640 if (tiflags & TH_ACK)
641 goto dropwithreset;
642 if ((tiflags & TH_SYN) == 0)
643 goto drop;
644
645 /*
646 * This has way too many gotos...
647 * But a bit of spaghetti code never hurt anybody :)
648 */
649
650 /*
651 * If this is destined for the control address, then flag to
652 * tcp_ctl once connected, otherwise connect
653 */
654 if ((so->so_faddr.s_addr&htonl(0xffffff00)) == special_addr.s_addr) {
655 int lastbyte=ntohl(so->so_faddr.s_addr) & 0xff;
656 if (lastbyte!=CTL_ALIAS && lastbyte!=CTL_DNS) {
657 #if 0
658 if(lastbyte==CTL_CMD || lastbyte==CTL_EXEC) {
659 /* Command or exec adress */
660 so->so_state |= SS_CTL;
661 } else
662 #endif
663 {
664 /* May be an add exec */
665 struct ex_list *ex_ptr;
666 for(ex_ptr = exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) {
667 if(ex_ptr->ex_fport == so->so_fport &&
668 lastbyte == ex_ptr->ex_addr) {
669 so->so_state |= SS_CTL;
670 break;
671 }
672 }
673 }
674 if(so->so_state & SS_CTL) goto cont_input;
675 }
676 /* CTL_ALIAS: Do nothing, tcp_fconnect will be called on it */
677 }
678
679 if (so->so_emu & EMU_NOCONNECT) {
680 so->so_emu &= ~EMU_NOCONNECT;
681 goto cont_input;
682 }
683
684 if((tcp_fconnect(so) == -1) && (errno != EINPROGRESS) && (errno != EWOULDBLOCK)) {
685 u_char code=ICMP_UNREACH_NET;
686 DEBUG_MISC((dfd," tcp fconnect errno = %d-%s\n",
687 errno,strerror(errno)));
688 if(errno == ECONNREFUSED) {
689 /* ACK the SYN, send RST to refuse the connection */
690 tcp_respond(tp, ti, m, ti->ti_seq+1, (tcp_seq)0,
691 TH_RST|TH_ACK);
692 } else {
693 if(errno == EHOSTUNREACH) code=ICMP_UNREACH_HOST;
694 HTONL(ti->ti_seq); /* restore tcp header */
695 HTONL(ti->ti_ack);
696 HTONS(ti->ti_win);
697 HTONS(ti->ti_urp);
698 m->m_data -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
699 m->m_len += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
700 *ip=save_ip;
701 icmp_error(m, ICMP_UNREACH,code, 0,strerror(errno));
702 }
703 tp = tcp_close(tp);
704 m_free(m);
705 } else {
706 /*
707 * Haven't connected yet, save the current mbuf
708 * and ti, and return
709 * XXX Some OS's don't tell us whether the connect()
710 * succeeded or not. So we must time it out.
711 */
712 so->so_m = m;
713 so->so_ti = ti;
714 tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
715 tp->t_state = TCPS_SYN_RECEIVED;
716 }
717 return;
718
719 cont_conn:
720 /* m==NULL
721 * Check if the connect succeeded
722 */
723 if (so->so_state & SS_NOFDREF) {
724 tp = tcp_close(tp);
725 goto dropwithreset;
726 }
727 cont_input:
728 tcp_template(tp);
729
730 if (optp)
731 tcp_dooptions(tp, (u_char *)optp, optlen, ti);
732 /* , */
733 /* &ts_present, &ts_val, &ts_ecr); */
734
735 if (iss)
736 tp->iss = iss;
737 else
738 tp->iss = tcp_iss;
739 tcp_iss += TCP_ISSINCR/2;
740 tp->irs = ti->ti_seq;
741 tcp_sendseqinit(tp);
742 tcp_rcvseqinit(tp);
743 tp->t_flags |= TF_ACKNOW;
744 tp->t_state = TCPS_SYN_RECEIVED;
745 tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
746 tcpstat.tcps_accepts++;
747 goto trimthenstep6;
748 } /* case TCPS_LISTEN */
749
750 /*
751 * If the state is SYN_SENT:
752 * if seg contains an ACK, but not for our SYN, drop the input.
753 * if seg contains a RST, then drop the connection.
754 * if seg does not contain SYN, then drop it.
755 * Otherwise this is an acceptable SYN segment
756 * initialize tp->rcv_nxt and tp->irs
757 * if seg contains ack then advance tp->snd_una
758 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
759 * arrange for segment to be acked (eventually)
760 * continue processing rest of data/controls, beginning with URG
761 */
762 case TCPS_SYN_SENT:
763 if ((tiflags & TH_ACK) &&
764 (SEQ_LEQ(ti->ti_ack, tp->iss) ||
765 SEQ_GT(ti->ti_ack, tp->snd_max)))
766 goto dropwithreset;
767
768 if (tiflags & TH_RST) {
769 if (tiflags & TH_ACK)
770 tp = tcp_drop(tp,0); /* XXX Check t_softerror! */
771 goto drop;
772 }
773
774 if ((tiflags & TH_SYN) == 0)
775 goto drop;
776 if (tiflags & TH_ACK) {
777 tp->snd_una = ti->ti_ack;
778 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
779 tp->snd_nxt = tp->snd_una;
780 }
781
782 tp->t_timer[TCPT_REXMT] = 0;
783 tp->irs = ti->ti_seq;
784 tcp_rcvseqinit(tp);
785 tp->t_flags |= TF_ACKNOW;
786 if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
787 tcpstat.tcps_connects++;
788 soisfconnected(so);
789 tp->t_state = TCPS_ESTABLISHED;
790
791 /* Do window scaling on this connection? */
792 /* if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
793 * (TF_RCVD_SCALE|TF_REQ_SCALE)) {
794 * tp->snd_scale = tp->requested_s_scale;
795 * tp->rcv_scale = tp->request_r_scale;
796 * }
797 */
798 (void) tcp_reass(tp, (struct tcpiphdr *)0,
799 (struct mbuf *)0);
800 /*
801 * if we didn't have to retransmit the SYN,
802 * use its rtt as our initial srtt & rtt var.
803 */
804 if (tp->t_rtt)
805 tcp_xmit_timer(tp, tp->t_rtt);
806 } else
807 tp->t_state = TCPS_SYN_RECEIVED;
808
809 trimthenstep6:
810 /*
811 * Advance ti->ti_seq to correspond to first data byte.
812 * If data, trim to stay within window,
813 * dropping FIN if necessary.
814 */
815 ti->ti_seq++;
816 if (ti->ti_len > tp->rcv_wnd) {
817 todrop = ti->ti_len - tp->rcv_wnd;
818 m_adj(m, -todrop);
819 ti->ti_len = tp->rcv_wnd;
820 tiflags &= ~TH_FIN;
821 tcpstat.tcps_rcvpackafterwin++;
822 tcpstat.tcps_rcvbyteafterwin += todrop;
823 }
824 tp->snd_wl1 = ti->ti_seq - 1;
825 tp->rcv_up = ti->ti_seq;
826 goto step6;
827 } /* switch tp->t_state */
828 /*
829 * States other than LISTEN or SYN_SENT.
830 * First check timestamp, if present.
831 * Then check that at least some bytes of segment are within
832 * receive window. If segment begins before rcv_nxt,
833 * drop leading data (and SYN); if nothing left, just ack.
834 *
835 * RFC 1323 PAWS: If we have a timestamp reply on this segment
836 * and it's less than ts_recent, drop it.
837 */
838 /* if (ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
839 * TSTMP_LT(ts_val, tp->ts_recent)) {
840 *
841 */ /* Check to see if ts_recent is over 24 days old. */
842 /* if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
843 */ /*
844 * * Invalidate ts_recent. If this segment updates
845 * * ts_recent, the age will be reset later and ts_recent
846 * * will get a valid value. If it does not, setting
847 * * ts_recent to zero will at least satisfy the
848 * * requirement that zero be placed in the timestamp
849 * * echo reply when ts_recent isn't valid. The
850 * * age isn't reset until we get a valid ts_recent
851 * * because we don't want out-of-order segments to be
852 * * dropped when ts_recent is old.
853 * */
854 /* tp->ts_recent = 0;
855 * } else {
856 * tcpstat.tcps_rcvduppack++;
857 * tcpstat.tcps_rcvdupbyte += ti->ti_len;
858 * tcpstat.tcps_pawsdrop++;
859 * goto dropafterack;
860 * }
861 * }
862 */
863
864 todrop = tp->rcv_nxt - ti->ti_seq;
865 if (todrop > 0) {
866 if (tiflags & TH_SYN) {
867 tiflags &= ~TH_SYN;
868 ti->ti_seq++;
869 if (ti->ti_urp > 1)
870 ti->ti_urp--;
871 else
872 tiflags &= ~TH_URG;
873 todrop--;
874 }
875 /*
876 * Following if statement from Stevens, vol. 2, p. 960.
877 */
878 if (todrop > ti->ti_len
879 || (todrop == ti->ti_len && (tiflags & TH_FIN) == 0)) {
880 /*
881 * Any valid FIN must be to the left of the window.
882 * At this point the FIN must be a duplicate or out
883 * of sequence; drop it.
884 */
885 tiflags &= ~TH_FIN;
886
887 /*
888 * Send an ACK to resynchronize and drop any data.
889 * But keep on processing for RST or ACK.
890 */
891 tp->t_flags |= TF_ACKNOW;
892 todrop = ti->ti_len;
893 tcpstat.tcps_rcvduppack++;
894 tcpstat.tcps_rcvdupbyte += todrop;
895 } else {
896 tcpstat.tcps_rcvpartduppack++;
897 tcpstat.tcps_rcvpartdupbyte += todrop;
898 }
899 m_adj(m, todrop);
900 ti->ti_seq += todrop;
901 ti->ti_len -= todrop;
902 if (ti->ti_urp > todrop)
903 ti->ti_urp -= todrop;
904 else {
905 tiflags &= ~TH_URG;
906 ti->ti_urp = 0;
907 }
908 }
909 /*
910 * If new data are received on a connection after the
911 * user processes are gone, then RST the other end.
912 */
913 if ((so->so_state & SS_NOFDREF) &&
914 tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
915 tp = tcp_close(tp);
916 tcpstat.tcps_rcvafterclose++;
917 goto dropwithreset;
918 }
919
920 /*
921 * If segment ends after window, drop trailing data
922 * (and PUSH and FIN); if nothing left, just ACK.
923 */
924 todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
925 if (todrop > 0) {
926 tcpstat.tcps_rcvpackafterwin++;
927 if (todrop >= ti->ti_len) {
928 tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
929 /*
930 * If a new connection request is received
931 * while in TIME_WAIT, drop the old connection
932 * and start over if the sequence numbers
933 * are above the previous ones.
934 */
935 if (tiflags & TH_SYN &&
936 tp->t_state == TCPS_TIME_WAIT &&
937 SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
938 iss = tp->rcv_nxt + TCP_ISSINCR;
939 tp = tcp_close(tp);
940 goto findso;
941 }
942 /*
943 * If window is closed can only take segments at
944 * window edge, and have to drop data and PUSH from
945 * incoming segments. Continue processing, but
946 * remember to ack. Otherwise, drop segment
947 * and ack.
948 */
949 if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
950 tp->t_flags |= TF_ACKNOW;
951 tcpstat.tcps_rcvwinprobe++;
952 } else
953 goto dropafterack;
954 } else
955 tcpstat.tcps_rcvbyteafterwin += todrop;
956 m_adj(m, -todrop);
957 ti->ti_len -= todrop;
958 tiflags &= ~(TH_PUSH|TH_FIN);
959 }
960
961 /*
962 * If last ACK falls within this segment's sequence numbers,
963 * record its timestamp.
964 */
965 /* if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
966 * SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len +
967 * ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
968 * tp->ts_recent_age = tcp_now;
969 * tp->ts_recent = ts_val;
970 * }
971 */
972
973 /*
974 * If the RST bit is set examine the state:
975 * SYN_RECEIVED STATE:
976 * If passive open, return to LISTEN state.
977 * If active open, inform user that connection was refused.
978 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
979 * Inform user that connection was reset, and close tcb.
980 * CLOSING, LAST_ACK, TIME_WAIT STATES
981 * Close the tcb.
982 */
983 if (tiflags&TH_RST) switch (tp->t_state) {
984
985 case TCPS_SYN_RECEIVED:
986 /* so->so_error = ECONNREFUSED; */
987 goto close;
988
989 case TCPS_ESTABLISHED:
990 case TCPS_FIN_WAIT_1:
991 case TCPS_FIN_WAIT_2:
992 case TCPS_CLOSE_WAIT:
993 /* so->so_error = ECONNRESET; */
994 close:
995 tp->t_state = TCPS_CLOSED;
996 tcpstat.tcps_drops++;
997 tp = tcp_close(tp);
998 goto drop;
999
1000 case TCPS_CLOSING:
1001 case TCPS_LAST_ACK:
1002 case TCPS_TIME_WAIT:
1003 tp = tcp_close(tp);
1004 goto drop;
1005 }
1006
1007 /*
1008 * If a SYN is in the window, then this is an
1009 * error and we send an RST and drop the connection.
1010 */
1011 if (tiflags & TH_SYN) {
1012 tp = tcp_drop(tp,0);
1013 goto dropwithreset;
1014 }
1015
1016 /*
1017 * If the ACK bit is off we drop the segment and return.
1018 */
1019 if ((tiflags & TH_ACK) == 0) goto drop;
1020
1021 /*
1022 * Ack processing.
1023 */
1024 switch (tp->t_state) {
1025 /*
1026 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1027 * ESTABLISHED state and continue processing, otherwise
1028 * send an RST. una<=ack<=max
1029 */
1030 case TCPS_SYN_RECEIVED:
1031
1032 if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
1033 SEQ_GT(ti->ti_ack, tp->snd_max))
1034 goto dropwithreset;
1035 tcpstat.tcps_connects++;
1036 tp->t_state = TCPS_ESTABLISHED;
1037 /*
1038 * The sent SYN is ack'ed with our sequence number +1
1039 * The first data byte already in the buffer will get
1040 * lost if no correction is made. This is only needed for
1041 * SS_CTL since the buffer is empty otherwise.
1042 * tp->snd_una++; or:
1043 */
1044 tp->snd_una=ti->ti_ack;
1045 if (so->so_state & SS_CTL) {
1046 /* So tcp_ctl reports the right state */
1047 ret = tcp_ctl(so);
1048 if (ret == 1) {
1049 soisfconnected(so);
1050 so->so_state &= ~SS_CTL; /* success XXX */
1051 } else if (ret == 2) {
1052 so->so_state = SS_NOFDREF; /* CTL_CMD */
1053 } else {
1054 needoutput = 1;
1055 tp->t_state = TCPS_FIN_WAIT_1;
1056 }
1057 } else {
1058 soisfconnected(so);
1059 }
1060
1061 /* Do window scaling? */
1062 /* if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1063 * (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1064 * tp->snd_scale = tp->requested_s_scale;
1065 * tp->rcv_scale = tp->request_r_scale;
1066 * }
1067 */
1068 (void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
1069 tp->snd_wl1 = ti->ti_seq - 1;
1070 /* Avoid ack processing; snd_una==ti_ack => dup ack */
1071 goto synrx_to_est;
1072 /* fall into ... */
1073
1074 /*
1075 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1076 * ACKs. If the ack is in the range
1077 * tp->snd_una < ti->ti_ack <= tp->snd_max
1078 * then advance tp->snd_una to ti->ti_ack and drop
1079 * data from the retransmission queue. If this ACK reflects
1080 * more up to date window information we update our window information.
1081 */
1082 case TCPS_ESTABLISHED:
1083 case TCPS_FIN_WAIT_1:
1084 case TCPS_FIN_WAIT_2:
1085 case TCPS_CLOSE_WAIT:
1086 case TCPS_CLOSING:
1087 case TCPS_LAST_ACK:
1088 case TCPS_TIME_WAIT:
1089
1090 if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
1091 if (ti->ti_len == 0 && tiwin == tp->snd_wnd) {
1092 tcpstat.tcps_rcvdupack++;
1093 DEBUG_MISC((dfd," dup ack m = %lx so = %lx \n",
1094 (long )m, (long )so));
1095 /*
1096 * If we have outstanding data (other than
1097 * a window probe), this is a completely
1098 * duplicate ack (ie, window info didn't
1099 * change), the ack is the biggest we've
1100 * seen and we've seen exactly our rexmt
1101 * threshold of them, assume a packet
1102 * has been dropped and retransmit it.
1103 * Kludge snd_nxt & the congestion
1104 * window so we send only this one
1105 * packet.
1106 *
1107 * We know we're losing at the current
1108 * window size so do congestion avoidance
1109 * (set ssthresh to half the current window
1110 * and pull our congestion window back to
1111 * the new ssthresh).
1112 *
1113 * Dup acks mean that packets have left the
1114 * network (they're now cached at the receiver)
1115 * so bump cwnd by the amount in the receiver
1116 * to keep a constant cwnd packets in the
1117 * network.
1118 */
1119 if (tp->t_timer[TCPT_REXMT] == 0 ||
1120 ti->ti_ack != tp->snd_una)
1121 tp->t_dupacks = 0;
1122 else if (++tp->t_dupacks == tcprexmtthresh) {
1123 tcp_seq onxt = tp->snd_nxt;
1124 u_int win =
1125 min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1126 tp->t_maxseg;
1127
1128 if (win < 2)
1129 win = 2;
1130 tp->snd_ssthresh = win * tp->t_maxseg;
1131 tp->t_timer[TCPT_REXMT] = 0;
1132 tp->t_rtt = 0;
1133 tp->snd_nxt = ti->ti_ack;
1134 tp->snd_cwnd = tp->t_maxseg;
1135 (void) tcp_output(tp);
1136 tp->snd_cwnd = tp->snd_ssthresh +
1137 tp->t_maxseg * tp->t_dupacks;
1138 if (SEQ_GT(onxt, tp->snd_nxt))
1139 tp->snd_nxt = onxt;
1140 goto drop;
1141 } else if (tp->t_dupacks > tcprexmtthresh) {
1142 tp->snd_cwnd += tp->t_maxseg;
1143 (void) tcp_output(tp);
1144 goto drop;
1145 }
1146 } else
1147 tp->t_dupacks = 0;
1148 break;
1149 }
1150 synrx_to_est:
1151 /*
1152 * If the congestion window was inflated to account
1153 * for the other side's cached packets, retract it.
1154 */
1155 if (tp->t_dupacks > tcprexmtthresh &&
1156 tp->snd_cwnd > tp->snd_ssthresh)
1157 tp->snd_cwnd = tp->snd_ssthresh;
1158 tp->t_dupacks = 0;
1159 if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
1160 tcpstat.tcps_rcvacktoomuch++;
1161 goto dropafterack;
1162 }
1163 acked = ti->ti_ack - tp->snd_una;
1164 tcpstat.tcps_rcvackpack++;
1165 tcpstat.tcps_rcvackbyte += acked;
1166
1167 /*
1168 * If we have a timestamp reply, update smoothed
1169 * round trip time. If no timestamp is present but
1170 * transmit timer is running and timed sequence
1171 * number was acked, update smoothed round trip time.
1172 * Since we now have an rtt measurement, cancel the
1173 * timer backoff (cf., Phil Karn's retransmit alg.).
1174 * Recompute the initial retransmit timer.
1175 */
1176 /* if (ts_present)
1177 * tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
1178 * else
1179 */
1180 if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
1181 tcp_xmit_timer(tp,tp->t_rtt);
1182
1183 /*
1184 * If all outstanding data is acked, stop retransmit
1185 * timer and remember to restart (more output or persist).
1186 * If there is more data to be acked, restart retransmit
1187 * timer, using current (possibly backed-off) value.
1188 */
1189 if (ti->ti_ack == tp->snd_max) {
1190 tp->t_timer[TCPT_REXMT] = 0;
1191 needoutput = 1;
1192 } else if (tp->t_timer[TCPT_PERSIST] == 0)
1193 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
1194 /*
1195 * When new data is acked, open the congestion window.
1196 * If the window gives us less than ssthresh packets
1197 * in flight, open exponentially (maxseg per packet).
1198 * Otherwise open linearly: maxseg per window
1199 * (maxseg^2 / cwnd per packet).
1200 */
1201 {
1202 register u_int cw = tp->snd_cwnd;
1203 register u_int incr = tp->t_maxseg;
1204
1205 if (cw > tp->snd_ssthresh)
1206 incr = incr * incr / cw;
1207 tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale);
1208 }
1209 if (acked > so->so_snd.sb_cc) {
1210 tp->snd_wnd -= so->so_snd.sb_cc;
1211 sbdrop(&so->so_snd, (int )so->so_snd.sb_cc);
1212 ourfinisacked = 1;
1213 } else {
1214 sbdrop(&so->so_snd, acked);
1215 tp->snd_wnd -= acked;
1216 ourfinisacked = 0;
1217 }
1218 /*
1219 * XXX sowwakup is called when data is acked and there's room for
1220 * for more data... it should read() the socket
1221 */
1222 /* if (so->so_snd.sb_flags & SB_NOTIFY)
1223 * sowwakeup(so);
1224 */
1225 tp->snd_una = ti->ti_ack;
1226 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1227 tp->snd_nxt = tp->snd_una;
1228
1229 switch (tp->t_state) {
1230
1231 /*
1232 * In FIN_WAIT_1 STATE in addition to the processing
1233 * for the ESTABLISHED state if our FIN is now acknowledged
1234 * then enter FIN_WAIT_2.
1235 */
1236 case TCPS_FIN_WAIT_1:
1237 if (ourfinisacked) {
1238 /*
1239 * If we can't receive any more
1240 * data, then closing user can proceed.
1241 * Starting the timer is contrary to the
1242 * specification, but if we don't get a FIN
1243 * we'll hang forever.
1244 */
1245 if (so->so_state & SS_FCANTRCVMORE) {
1246 soisfdisconnected(so);
1247 tp->t_timer[TCPT_2MSL] = tcp_maxidle;
1248 }
1249 tp->t_state = TCPS_FIN_WAIT_2;
1250 }
1251 break;
1252
1253 /*
1254 * In CLOSING STATE in addition to the processing for
1255 * the ESTABLISHED state if the ACK acknowledges our FIN
1256 * then enter the TIME-WAIT state, otherwise ignore
1257 * the segment.
1258 */
1259 case TCPS_CLOSING:
1260 if (ourfinisacked) {
1261 tp->t_state = TCPS_TIME_WAIT;
1262 tcp_canceltimers(tp);
1263 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1264 soisfdisconnected(so);
1265 }
1266 break;
1267
1268 /*
1269 * In LAST_ACK, we may still be waiting for data to drain
1270 * and/or to be acked, as well as for the ack of our FIN.
1271 * If our FIN is now acknowledged, delete the TCB,
1272 * enter the closed state and return.
1273 */
1274 case TCPS_LAST_ACK:
1275 if (ourfinisacked) {
1276 tp = tcp_close(tp);
1277 goto drop;
1278 }
1279 break;
1280
1281 /*
1282 * In TIME_WAIT state the only thing that should arrive
1283 * is a retransmission of the remote FIN. Acknowledge
1284 * it and restart the finack timer.
1285 */
1286 case TCPS_TIME_WAIT:
1287 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1288 goto dropafterack;
1289 }
1290 } /* switch(tp->t_state) */
1291
1292 step6:
1293 /*
1294 * Update window information.
1295 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1296 */
1297 if ((tiflags & TH_ACK) &&
1298 (SEQ_LT(tp->snd_wl1, ti->ti_seq) ||
1299 (tp->snd_wl1 == ti->ti_seq && (SEQ_LT(tp->snd_wl2, ti->ti_ack) ||
1300 (tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd))))) {
1301 /* keep track of pure window updates */
1302 if (ti->ti_len == 0 &&
1303 tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)
1304 tcpstat.tcps_rcvwinupd++;
1305 tp->snd_wnd = tiwin;
1306 tp->snd_wl1 = ti->ti_seq;
1307 tp->snd_wl2 = ti->ti_ack;
1308 if (tp->snd_wnd > tp->max_sndwnd)
1309 tp->max_sndwnd = tp->snd_wnd;
1310 needoutput = 1;
1311 }
1312
1313 /*
1314 * Process segments with URG.
1315 */
1316 if ((tiflags & TH_URG) && ti->ti_urp &&
1317 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1318 /*
1319 * This is a kludge, but if we receive and accept
1320 * random urgent pointers, we'll crash in
1321 * soreceive. It's hard to imagine someone
1322 * actually wanting to send this much urgent data.
1323 */
1324 if (ti->ti_urp + so->so_rcv.sb_cc > so->so_rcv.sb_datalen) {
1325 ti->ti_urp = 0;
1326 tiflags &= ~TH_URG;
1327 goto dodata;
1328 }
1329 /*
1330 * If this segment advances the known urgent pointer,
1331 * then mark the data stream. This should not happen
1332 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1333 * a FIN has been received from the remote side.
1334 * In these states we ignore the URG.
1335 *
1336 * According to RFC961 (Assigned Protocols),
1337 * the urgent pointer points to the last octet
1338 * of urgent data. We continue, however,
1339 * to consider it to indicate the first octet
1340 * of data past the urgent section as the original
1341 * spec states (in one of two places).
1342 */
1343 if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
1344 tp->rcv_up = ti->ti_seq + ti->ti_urp;
1345 so->so_urgc = so->so_rcv.sb_cc +
1346 (tp->rcv_up - tp->rcv_nxt); /* -1; */
1347 tp->rcv_up = ti->ti_seq + ti->ti_urp;
1348
1349 }
1350 } else
1351 /*
1352 * If no out of band data is expected,
1353 * pull receive urgent pointer along
1354 * with the receive window.
1355 */
1356 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1357 tp->rcv_up = tp->rcv_nxt;
1358 dodata:
1359
1360 /*
1361 * Process the segment text, merging it into the TCP sequencing queue,
1362 * and arranging for acknowledgment of receipt if necessary.
1363 * This process logically involves adjusting tp->rcv_wnd as data
1364 * is presented to the user (this happens in tcp_usrreq.c,
1365 * case PRU_RCVD). If a FIN has already been received on this
1366 * connection then we just ignore the text.
1367 */
1368 if ((ti->ti_len || (tiflags&TH_FIN)) &&
1369 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1370 TCP_REASS(tp, ti, m, so, tiflags);
1371 /*
1372 * Note the amount of data that peer has sent into
1373 * our window, in order to estimate the sender's
1374 * buffer size.
1375 */
1376 len = so->so_rcv.sb_datalen - (tp->rcv_adv - tp->rcv_nxt);
1377 } else {
1378 m_free(m);
1379 tiflags &= ~TH_FIN;
1380 }
1381
1382 /*
1383 * If FIN is received ACK the FIN and let the user know
1384 * that the connection is closing.
1385 */
1386 if (tiflags & TH_FIN) {
1387 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1388 /*
1389 * If we receive a FIN we can't send more data,
1390 * set it SS_FDRAIN
1391 * Shutdown the socket if there is no rx data in the
1392 * buffer.
1393 * soread() is called on completion of shutdown() and
1394 * will got to TCPS_LAST_ACK, and use tcp_output()
1395 * to send the FIN.
1396 */
1397 /* sofcantrcvmore(so); */
1398 sofwdrain(so);
1399
1400 tp->t_flags |= TF_ACKNOW;
1401 tp->rcv_nxt++;
1402 }
1403 switch (tp->t_state) {
1404
1405 /*
1406 * In SYN_RECEIVED and ESTABLISHED STATES
1407 * enter the CLOSE_WAIT state.
1408 */
1409 case TCPS_SYN_RECEIVED:
1410 case TCPS_ESTABLISHED:
1411 if(so->so_emu == EMU_CTL) /* no shutdown on socket */
1412 tp->t_state = TCPS_LAST_ACK;
1413 else
1414 tp->t_state = TCPS_CLOSE_WAIT;
1415 break;
1416
1417 /*
1418 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1419 * enter the CLOSING state.
1420 */
1421 case TCPS_FIN_WAIT_1:
1422 tp->t_state = TCPS_CLOSING;
1423 break;
1424
1425 /*
1426 * In FIN_WAIT_2 state enter the TIME_WAIT state,
1427 * starting the time-wait timer, turning off the other
1428 * standard timers.
1429 */
1430 case TCPS_FIN_WAIT_2:
1431 tp->t_state = TCPS_TIME_WAIT;
1432 tcp_canceltimers(tp);
1433 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1434 soisfdisconnected(so);
1435 break;
1436
1437 /*
1438 * In TIME_WAIT state restart the 2 MSL time_wait timer.
1439 */
1440 case TCPS_TIME_WAIT:
1441 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1442 break;
1443 }
1444 }
1445
1446 /*
1447 * If this is a small packet, then ACK now - with Nagel
1448 * congestion avoidance sender won't send more until
1449 * he gets an ACK.
1450 *
1451 * See above.
1452 */
1453 /* if (ti->ti_len && (unsigned)ti->ti_len < tp->t_maxseg) {
1454 */
1455 /* if ((ti->ti_len && (unsigned)ti->ti_len < tp->t_maxseg &&
1456 * (so->so_iptos & IPTOS_LOWDELAY) == 0) ||
1457 * ((so->so_iptos & IPTOS_LOWDELAY) &&
1458 * ((struct tcpiphdr_2 *)ti)->first_char == (char)27)) {
1459 */
1460 if (ti->ti_len && (unsigned)ti->ti_len <= 5 &&
1461 ((struct tcpiphdr_2 *)ti)->first_char == (char)27) {
1462 tp->t_flags |= TF_ACKNOW;
1463 }
1464
1465 /*
1466 * Return any desired output.
1467 */
1468 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
1469 (void) tcp_output(tp);
1470 }
1471 return;
1472
1473 dropafterack:
1474 /*
1475 * Generate an ACK dropping incoming segment if it occupies
1476 * sequence space, where the ACK reflects our state.
1477 */
1478 if (tiflags & TH_RST)
1479 goto drop;
1480 m_freem(m);
1481 tp->t_flags |= TF_ACKNOW;
1482 (void) tcp_output(tp);
1483 return;
1484
1485 dropwithreset:
1486 /* reuses m if m!=NULL, m_free() unnecessary */
1487 if (tiflags & TH_ACK)
1488 tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
1489 else {
1490 if (tiflags & TH_SYN) ti->ti_len++;
1491 tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
1492 TH_RST|TH_ACK);
1493 }
1494
1495 return;
1496
1497 drop:
1498 /*
1499 * Drop space held by incoming segment and return.
1500 */
1501 m_free(m);
1502
1503 return;
1504 }
1505
1506 /* , ts_present, ts_val, ts_ecr) */
1507 /* int *ts_present;
1508 * u_int32_t *ts_val, *ts_ecr;
1509 */
1510 void
1511 tcp_dooptions(tp, cp, cnt, ti)
1512 struct tcpcb *tp;
1513 u_char *cp;
1514 int cnt;
1515 struct tcpiphdr *ti;
1516 {
1517 u_int16_t mss;
1518 int opt, optlen;
1519
1520 DEBUG_CALL("tcp_dooptions");
1521 DEBUG_ARGS((dfd," tp = %lx cnt=%i \n", (long )tp, cnt));
1522
1523 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1524 opt = cp[0];
1525 if (opt == TCPOPT_EOL)
1526 break;
1527 if (opt == TCPOPT_NOP)
1528 optlen = 1;
1529 else {
1530 optlen = cp[1];
1531 if (optlen <= 0)
1532 break;
1533 }
1534 switch (opt) {
1535
1536 default:
1537 continue;
1538
1539 case TCPOPT_MAXSEG:
1540 if (optlen != TCPOLEN_MAXSEG)
1541 continue;
1542 if (!(ti->ti_flags & TH_SYN))
1543 continue;
1544 memcpy((char *) &mss, (char *) cp + 2, sizeof(mss));
1545 NTOHS(mss);
1546 (void) tcp_mss(tp, mss); /* sets t_maxseg */
1547 break;
1548
1549 /* case TCPOPT_WINDOW:
1550 * if (optlen != TCPOLEN_WINDOW)
1551 * continue;
1552 * if (!(ti->ti_flags & TH_SYN))
1553 * continue;
1554 * tp->t_flags |= TF_RCVD_SCALE;
1555 * tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
1556 * break;
1557 */
1558 /* case TCPOPT_TIMESTAMP:
1559 * if (optlen != TCPOLEN_TIMESTAMP)
1560 * continue;
1561 * *ts_present = 1;
1562 * memcpy((char *) ts_val, (char *)cp + 2, sizeof(*ts_val));
1563 * NTOHL(*ts_val);
1564 * memcpy((char *) ts_ecr, (char *)cp + 6, sizeof(*ts_ecr));
1565 * NTOHL(*ts_ecr);
1566 *
1567 */ /*
1568 * * A timestamp received in a SYN makes
1569 * * it ok to send timestamp requests and replies.
1570 * */
1571 /* if (ti->ti_flags & TH_SYN) {
1572 * tp->t_flags |= TF_RCVD_TSTMP;
1573 * tp->ts_recent = *ts_val;
1574 * tp->ts_recent_age = tcp_now;
1575 * }
1576 */ break;
1577 }
1578 }
1579 }
1580
1581
1582 /*
1583 * Pull out of band byte out of a segment so
1584 * it doesn't appear in the user's data queue.
1585 * It is still reflected in the segment length for
1586 * sequencing purposes.
1587 */
1588
1589 #ifdef notdef
1590
1591 void
1592 tcp_pulloutofband(so, ti, m)
1593 struct socket *so;
1594 struct tcpiphdr *ti;
1595 register struct mbuf *m;
1596 {
1597 int cnt = ti->ti_urp - 1;
1598
1599 while (cnt >= 0) {
1600 if (m->m_len > cnt) {
1601 char *cp = mtod(m, caddr_t) + cnt;
1602 struct tcpcb *tp = sototcpcb(so);
1603
1604 tp->t_iobc = *cp;
1605 tp->t_oobflags |= TCPOOB_HAVEDATA;
1606 memcpy(sp, cp+1, (unsigned)(m->m_len - cnt - 1));
1607 m->m_len--;
1608 return;
1609 }
1610 cnt -= m->m_len;
1611 m = m->m_next; /* XXX WRONG! Fix it! */
1612 if (m == 0)
1613 break;
1614 }
1615 panic("tcp_pulloutofband");
1616 }
1617
1618 #endif /* notdef */
1619
1620 /*
1621 * Collect new round-trip time estimate
1622 * and update averages and current timeout.
1623 */
1624
1625 void
1626 tcp_xmit_timer(tp, rtt)
1627 register struct tcpcb *tp;
1628 int rtt;
1629 {
1630 register short delta;
1631
1632 DEBUG_CALL("tcp_xmit_timer");
1633 DEBUG_ARG("tp = %lx", (long)tp);
1634 DEBUG_ARG("rtt = %d", rtt);
1635
1636 tcpstat.tcps_rttupdated++;
1637 if (tp->t_srtt != 0) {
1638 /*
1639 * srtt is stored as fixed point with 3 bits after the
1640 * binary point (i.e., scaled by 8). The following magic
1641 * is equivalent to the smoothing algorithm in rfc793 with
1642 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
1643 * point). Adjust rtt to origin 0.
1644 */
1645 delta = rtt - 1 - (tp->t_srtt >> TCP_RTT_SHIFT);
1646 if ((tp->t_srtt += delta) <= 0)
1647 tp->t_srtt = 1;
1648 /*
1649 * We accumulate a smoothed rtt variance (actually, a
1650 * smoothed mean difference), then set the retransmit
1651 * timer to smoothed rtt + 4 times the smoothed variance.
1652 * rttvar is stored as fixed point with 2 bits after the
1653 * binary point (scaled by 4). The following is
1654 * equivalent to rfc793 smoothing with an alpha of .75
1655 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
1656 * rfc793's wired-in beta.
1657 */
1658 if (delta < 0)
1659 delta = -delta;
1660 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
1661 if ((tp->t_rttvar += delta) <= 0)
1662 tp->t_rttvar = 1;
1663 } else {
1664 /*
1665 * No rtt measurement yet - use the unsmoothed rtt.
1666 * Set the variance to half the rtt (so our first
1667 * retransmit happens at 3*rtt).
1668 */
1669 tp->t_srtt = rtt << TCP_RTT_SHIFT;
1670 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
1671 }
1672 tp->t_rtt = 0;
1673 tp->t_rxtshift = 0;
1674
1675 /*
1676 * the retransmit should happen at rtt + 4 * rttvar.
1677 * Because of the way we do the smoothing, srtt and rttvar
1678 * will each average +1/2 tick of bias. When we compute
1679 * the retransmit timer, we want 1/2 tick of rounding and
1680 * 1 extra tick because of +-1/2 tick uncertainty in the
1681 * firing of the timer. The bias will give us exactly the
1682 * 1.5 tick we need. But, because the bias is
1683 * statistical, we have to test that we don't drop below
1684 * the minimum feasible timer (which is 2 ticks).
1685 */
1686 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
1687 (short)tp->t_rttmin, TCPTV_REXMTMAX); /* XXX */
1688
1689 /*
1690 * We received an ack for a packet that wasn't retransmitted;
1691 * it is probably safe to discard any error indications we've
1692 * received recently. This isn't quite right, but close enough
1693 * for now (a route might have failed after we sent a segment,
1694 * and the return path might not be symmetrical).
1695 */
1696 tp->t_softerror = 0;
1697 }
1698
1699 /*
1700 * Determine a reasonable value for maxseg size.
1701 * If the route is known, check route for mtu.
1702 * If none, use an mss that can be handled on the outgoing
1703 * interface without forcing IP to fragment; if bigger than
1704 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
1705 * to utilize large mbufs. If no route is found, route has no mtu,
1706 * or the destination isn't local, use a default, hopefully conservative
1707 * size (usually 512 or the default IP max size, but no more than the mtu
1708 * of the interface), as we can't discover anything about intervening
1709 * gateways or networks. We also initialize the congestion/slow start
1710 * window to be a single segment if the destination isn't local.
1711 * While looking at the routing entry, we also initialize other path-dependent
1712 * parameters from pre-set or cached values in the routing entry.
1713 */
1714
1715 int
1716 tcp_mss(tp, offer)
1717 register struct tcpcb *tp;
1718 u_int offer;
1719 {
1720 struct socket *so = tp->t_socket;
1721 int mss;
1722
1723 DEBUG_CALL("tcp_mss");
1724 DEBUG_ARG("tp = %lx", (long)tp);
1725 DEBUG_ARG("offer = %d", offer);
1726
1727 mss = min(if_mtu, if_mru) - sizeof(struct tcpiphdr);
1728 if (offer)
1729 mss = min(mss, offer);
1730 mss = max(mss, 32);
1731 if (mss < tp->t_maxseg || offer != 0)
1732 tp->t_maxseg = mss;
1733
1734 tp->snd_cwnd = mss;
1735
1736 sbreserve(&so->so_snd, tcp_sndspace+((tcp_sndspace%mss)?(mss-(tcp_sndspace%mss)):0));
1737 sbreserve(&so->so_rcv, tcp_rcvspace+((tcp_rcvspace%mss)?(mss-(tcp_rcvspace%mss)):0));
1738
1739 DEBUG_MISC((dfd, " returning mss = %d\n", mss));
1740
1741 return mss;
1742 }